Integration- Mark Scheme

June 2018 Mathematics Advanced Paper 1: Pure Mathematics 1

Question	Scheme	Marks	AOs
7 (a)	$\int \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(3x-k)$	M1	1.1a
	$\int \frac{1}{(3x-k)} dx = \frac{1}{3} \ln(3x-k)$	A1	1.1b
	$\int_{k}^{3k} \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(9k-k) - \frac{2}{3} \ln(3k-k)$	dM1	1.1b
	$= \frac{2}{3} \ln \left(\frac{8 \cancel{K}}{2 \cancel{K}} \right) = \frac{2}{3} \ln 4 \text{ oe}$	A1	2.1
		(4)	
(b)	$\int \frac{2}{(2x-k)^2} dx = -\frac{1}{(2x-k)}$	M1	1.1b
	$\int_{k}^{2k} \frac{2}{(2x-k)^2} dx = -\frac{1}{(4k-k)} + \frac{1}{(2k-k)}$	dM1	1.1b
	$=\frac{2}{3k} \left(\propto \frac{1}{k} \right)$	A1	2.1
		(3)	
		(7 marks)

(a)

M1:
$$\int \frac{2}{(3x-k)} dx = A \ln(3x-k)$$
 Condone a missing bracket

A1:
$$\int \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(3x-k)$$

Allow recovery from a missing bracket if in subsequent work $A \ln 9k - k \rightarrow A \ln 8k$ **dM1:** For substituting k and 3k into their $A \ln (3x - k)$ and subtracting either way around

A1: Uses correct ln work and notation to show that $I = \frac{2}{3} \ln \left(\frac{8}{2} \right)$ or $\frac{2}{3} \ln 4$ oe (ie independent of k)

(b)

M1:
$$\int \frac{2}{(2x-k)^2} dx = \frac{C}{(2x-k)}$$

dM1: For substituting k and 2k into their $\frac{C}{(2x-k)}$ and subtracting

A1: Shows that it is inversely proportional to k Eg proceeds to the answer is of the form $\frac{A}{k}$ with $A = \frac{2}{3}$

There is no need to perform the whole calculation. Accept from
$$-\frac{1}{(3k)} + \frac{1}{(k)} = \left(-\frac{1}{3} + 1\right) \times \frac{1}{k} \propto \frac{1}{k}$$

If the calculation is performed it must be correct.

Do not isw here. They should know when they have an expression that is inversely proportional to *k***.** You may see substitution used but the mark is scored for the same result. See below

$$u = 2x - k \rightarrow \left[\frac{C}{u}\right]$$
 for M1 with limits $3k$ and k used for dM1

2.

Question	Scheme	Marks	AOs
10(a)	$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{H\cos 0.25t}{40} \Rightarrow \int \frac{1}{H} \mathrm{d}H = \int \frac{\cos 0.25t}{40} \mathrm{d}t$	M1	3.1a
	$\ln H = \frac{1}{10}\sin 0.25t (+c)$	M1	1.1b
	$\ln H = \frac{10}{10} \sin 0.25 t (+c)$	A1	1.1b
	Substitutes $t = 0, H = 5 \Rightarrow c = \ln(5)$	dM1	3.4
	$\ln\left(\frac{H}{5}\right) = \frac{1}{10}\sin 0.25t \Rightarrow H = 5e^{0.1\sin 0.25t} *$	A1*	2.1
		(5)	
(b)	Max height = $5e^{0.1} = 5.53 \text{ m}$ (Condone lack of units)	B1	3.4
		(1)	
(c)	$Sets \ 0.25t = \frac{5\pi}{2}$	M1	3.1b
	31.4	A1	1.1b
		(2)	
			(8 marks)

(a)

M1: Separates the variables to reach
$$\int \frac{1}{H} dH = \int \frac{\cos 0.25t}{40} dt$$
 or equivalent.

The integral signs need to be present on both sides and the dH AND dt need to be in the correct positions.

M1: Integrates both sides to reach $\ln H = A \sin 0.25t$ or equivalent with or without the + c

A1: $\ln H = \frac{1}{10} \sin 0.25t + c$ or equivalent with or without the + c. Allow two constants, one either side

If the 40 was on the lhs look for $40 \ln H = 4 \sin 0.25t + c$ or equivalent.

dM1: Substitutes $t = 0, H = 5 \Rightarrow c = ...$ There needs to have been a single "+ c" to find.

It is dependent upon the previous M mark. You may allow even if you don't explicitly see "t = 0, H = 5" as it may be implied from their previous line

If the candidate has attempted to change the subject and made an error/slip then condone it for this M but not the final A. Eg. $40 \ln H = 4 \sin 0.25t + c \Longrightarrow H^{40} = e^{4 \sin 0.25t} + e^c \Longrightarrow 5^{40} = 1 + e^c \Longrightarrow c = ...$

Also many students will be attempting to get to the given answer so condone the method of finding c = ...These students will lose the A1* mark

A1*: Proceeds via $\ln H = \frac{1}{10} \sin 0.25t + \ln 5$ or equivalent to the given answer $H = 5e^{0.1\sin 0.25t}$ with at least one correct intermediate line and no incorrect work.

DO NOT condone c's going to c's when they should be ec or A

Accept as a minimum $\ln H = \frac{1}{10} \sin 0.25t + \ln 5 \Rightarrow H = e^{\frac{1}{10} \sin 0.25t + \ln 5}$ or $H = e^{\frac{1}{10} \sin 0.25t} \times e^{+\ln 5}$ before sight of the given answer

If the only error was to omit the integration signs on line 1, thus losing the first M1, allow the candidate to have access to this mark following a correct intermediate line (see above).

If they attempt to change the subject first then the constant of integration must have been adapted if the A1*

is to be awarded.
$$\ln H = \frac{1}{10} \sin 0.25t + c \Rightarrow H = e^{\frac{1}{10} \sin 0.25t + c} \Rightarrow H = Ae^{\frac{1}{10} \sin 0.25t}$$

The dM1 and A1* under this method are awarded at virtually the same time.

Also, for the final two marks, you may see a proof from $\int_{0}^{H} \frac{40}{H} dH = \int_{5}^{t} \cos 0.25t \, dt$

There is an alternative via the use of an integrating factor.

.....

(b)

B1: States that the maximum height is 5.53 m Accept 5e^{0.1} Condone a lack of units here, but penalise if incorrect units are used.

(c)

M1: For identifying that it would reach the maximum height for the 2nd time when $0.25t = \frac{5\pi}{2}$ or 450

A1: Accept awrt 31.4 or 10π Allow if units are seen

Question Number				5	Scheme				Marks
3.		x	0	0.5	1	1.5	2		
3.		у	1	2.821	6	12.502	26.585		
(a)	$\{At \ x=1,\}$	y = 6 (al	low 6.000	or even 6.00)					B1 cao
(b)	$\frac{1}{2} \times 0.5$;							(1) B1 oe	
	$\{1 + 26.585 + 2(2.821 + \text{their } 6 + 12.502)\}\$ For structure of $\{\dots, \}$;						M1 <u>A1ft</u>		
	$\frac{1}{2} \times 0.5 \left\{ 1 + 26.585 + 2(2.821 + 6 + 12.502) \right\} \left\{ = \frac{1}{4} (70.231) = 17.557 \right\} = \text{awrt } 17.56$						A1		
(c)	10 + "17.56" = "27.56"						B1ft (1)		
									[6]
(-)	DI. 6				Notes				
(a)	B1: 6	- 105	1						

(b) B1: for using $\frac{1}{2} \times 0.5$ or $\frac{1}{4}$ or equivalent.

M1: requires the correct $\{......\}$ bracket structure. It needs the first bracket to contain first y value **plus** last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from 2nd bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark however). M0 if values used in brackets are x values instead of y values

Alft: for the correct bracket \{.....\} following through candidate's y value found in part (a).

A1: for answer which rounds to 17.56

NB: Separate trapezia may be used: B1 for 0.25, M1 for 1/2 h(a + b) used 3 or 4 times (and A1ft if it is all correct) Then A1 as before.

Special case: Bracketing mistake $0.25 \times (1 + 26.585) + 2(2.821 + \text{their } 6 + 12.502)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). An answer of 49.542 usually indicates this error.

(c) B1ft: 10 + their answer to part (b)
(May be obtained by using the trapezium rule again with all values for y increased by 5)

Question Number	Scheme					
10. (a)	$\frac{dy}{dx} = 12x^2$	+18x-30	M1			
	Either Substitute $x = 1$ to give $\frac{dy}{dx} = 12 + 18 - 30 = 0$	Or Solve $\frac{dy}{dx} = 12x^2 + 18x - 30 = 0$ to give $x = $	A1			
	So turning point (all correct work so far)	Deduce $x = 1$ from correct work	A1cso (3)			
(b) Way 1	When $x = 1$, $y = 4 + 9 - 30 - 8 = -25$		B1			
	Area of triangle $ABP = \frac{1}{2} \times 1 \times 25 = 12.5$ (V	Where P is at $(1, 0)$)	B1			
	Way 1: $\int (4x^3 + 9x^2 - 30x - 8) dx = x^4 + \frac{9}{3}x^3 - \frac{9}{3}x^$	$-\frac{30x^2}{2} - 8x \left\{+c\right\} or x^4 + 3x^3 - 15x^2 - 8x \left\{+c\right\}$	M1A1			
	$\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 15) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 15) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 15) - \left((-\frac{1}{4}\right)^{1}\right)^{1} = (1 + 3 - 15 - 15) - \left((-\frac{1}{4}\right$	$\left(-\frac{1}{4}\right)^4 + 3\left(-\frac{1}{4}\right)^3 - 15\left(-\frac{1}{4}\right)^2 - 8\left(-\frac{1}{4}\right)$	dM1			
	$=(-19)-\frac{261}{256}$	or -19 - 1.02				
	So Area = "their 12.5" + "their 20 $\frac{5}{256}$ " or "1	12.5 " + " 20.02 " or " 12.5 " + " their $\frac{5125}{256}$ "	ddM1			
	= 32.52 (NOT – 32.52)	250	A1 (7)			
	Less efficient alternative methods for first two marks in part (b) with Way 1 or 2 For first mark: Finding equation of the line AB as $y = 25x - 50$ as this implies the -25 For second mark: Integrating to find triangle area					
	$\int_{1}^{2} (25x - 50) dx = \left[\frac{25}{2} x^{2} - 50x \right]_{1}^{2} = -50 + 37.5 = -$	-12.5 so area is 12.5	B1			
	Then mark as before if they use Method in o					
(b) Way 2	Way 2: Those who use area for original cur between line and curve between 1 and 2 has					
	The first B1 (if y=-25 is not seen) is for equality the second B1 may be implied by final answer.	ation of straight line $y = 25x - 50$	B1			
	shaped" region between line and curve, or by are	ea between line and axis/triangle found as 12.5	B1			
	$\int (4x^3 + 9x^2 - 55x + 42) dx = x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2}$		M1A1			
	The dM1 is for correct use of the different co					
	$\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^2 = (16 + 24 - 60 - 16) - 6x + 6x$	$-\left(\left(-\frac{1}{4}\right)\right) + 3\left(-\frac{1}{4}\right) - 15\left(-\frac{1}{4}\right) - 8\left(-\frac{1}{4}\right)\right)$				
	And $\left[x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x \right]_1^2 = 16 + 24 - 110$	+84-(1+3-27.5+42)	dM1			
	So Area = their $\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^2$ min	L - 1	ddM1			
	i.e. "their 37.0195" – "their 4.5" (with b Reaching = 32.52 (NOT – 32.52)	oth sets of limits correct for the integral)	A1			
	See over for special case with wrong limits					

NB: Those who attempt curve – line wrongly with limits –1/4 to 2 may earn M1A1 for correct integration of their cubic. Usually e.g.

M1A1

$$\int (4x^3 + 9x^2 - 55x + 42) dx = x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x \left\{ + c \right\}$$

(They will not earn any of the last 3 marks)

They may also get first B1 mark for the correct equation of the straight line (usually seen but may be implied by correct line –curve equation) and second B1 if they also use limits 1 and 2 to obtain 4.5 (or find the triangle area 12.5).

Notes

(a) M1: Attempt at differentiation - all powers reduced by 1 with $8 \rightarrow 0$.

A1: the derivative must be correct and uses derivative = 0 to find x or substitutes x = 1 to give 0. Ignore any reference to the other root (-5/2) for this mark.

Alcso: obtains x = 1 from correct work, or deduces turning point (if substitution used – may be implied by a preamble e.g. dv/dx = 0 at T.P.)

N.B. If their factorisation or their second root is incorrect then award A0cso.

If however their factorisation/roots are correct, it is not necessary for them to comment that -2.5 is outside the range given.

(b) Way 1:

B1: Obtains y = -25 when x = 1 (may be seen anywhere – even in (a)) or finds correct equation of line is y = 25x - 50

B1: Obtains area of triangle = 12.5 (may be seen anywhere). Allow -12.5. Accept $\frac{1}{2} \times 1 \times 25$

M1: Attempt at integration of cubic; two correct terms for their integration. No limits needed

A1: completely correct integral for the cubic (may be unsimplified)

dM1: We are looking for the start of a correct method here (dependent on previous M). It is for substituting 1 and -1/4 and subtracting. May use 2 and -1/4 and also 2 and 1 **AND subtract** (which is equivalent)

ddM1 (depends on both method marks) Correct method to obtain shaded area so adds two positive numbers (areas) together – one is area of triangle, the other is area of region obtained from integration of correct function with correct limits (may add two negatives then makes positive)

Way 2: This is a long method and needs to be a correct method

B1: Finds y=-25 at x=1, or correct equation of line is y=25x-50

B1: May be implied where WAY 2 is used and final correct answer obtained so award of final A1 results in the award of this B1. It may also be implied by correct integration of line equation or of curve minus line expression between limits 1 and 2. So if only slip is final subtraction (giving final A0, this mark may still be awarded) So may be implied by 4.5 seen for area of "segment shaped" region between line and curve.

M1: Attempt at integration of given cubic or after attempt at subtracting their line equation (no limits needed). Two correct terms needed

A1: Completely correct integral for their cubic (may be unsimplified) – may have wrong coefficients of x and wrong constant term through errors in subtraction

dM1: Use limits for original curve between -1/4 and 2 and use limits of 1 and 2 for area between line and curve—needs completely correct limits—see scheme- this is dependent on two integrations ddM1: (depends on both method marks) Subtracts "their 37.0195"—"their 4.5" Needs consistency of signs.

A1: 32.52 or awrt 32.52 e.g. $32\frac{133}{256}$ NB: This correct answer implies the second B mark

(Trapezium rule gets no marks after first two B marks) The first two B marks may be given wherever seen. The integration of a cubic gives the following M1 and correct integration of their cubic

$$\int (4x^3 + 9x^2 + Ax + B) dx = x^4 + \frac{9}{3}x^3 + \frac{Ax^2}{2} + Bx \{ + c \} \text{ gives the A1}$$

Question Number		Scheme	Marks
- 1	y = 8 - 2	2 ^{x-1} , 0,, x,, 4	
2. (a)	7		B1 cao
			[1]
		Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$	B1;
(b)	$(\int_{0}^{4} (8-2)^{4})^{1/2}$	$(2^{x-1})dx \approx \frac{1}{2} \times 1; \times \{7.5 + 2(\text{"their 7"} + 6 + 4) + 0\}$ For structure of trapezium	
	(30)	rule {	<u>M1</u>
		candidate's y-ordinates.	
	$\left\{=\frac{1}{2}\times 4\right\}$	1.5 = 20.75 o.e. 20.75	A1 cao
			[3]
(c)	Area (R)	$="20.75" - \frac{1}{2}(7.5)(4)$	M1
		= 5.75 5.75	A1 cao
			<u>J2]</u>
		Question 2 Notes	
		Question 2 Protes	
(a)	B1	For 7 only	
(b)	В1	For using $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent.	
(-)	M1	Requires the correct {} bracket structure. It needs the 7.5 stated but the 0 may be on	itted. The
		inner bracket needs to be multiplied by 2 and to be the summation of the remaining y va	
		table with no additional values.	
		If the only mistake is a copying error or is to omit one value from 2nd bracket this may as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark h	
		(unless it is 0)). M0 is awarded if values used in brackets are x values instead of y values	
	A1	For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$	
	Note	NB: Separate trapezia may be used: B1 for 0.5, M1 for $1/2$ $h(a + b)$ used 3 or 4 times as before.	Then A1
	Special	Bracketing mistake $0.5 \times (7.5 + 0) + 2$ (their $7 + 6 + 4$) scores B1 M1 A0 unless the final	al answer
	case:	implies that the calculation has been done correctly (then full marks can be given). An a 37.75 usually indicates this error.	
	Common	Many candidates use $\frac{1}{2} \times \frac{4}{5}$ and score B0 Then they proceed with $\{7.5 + 2("their 7" + 6")\}$	+4)+0}
	error:	and score M1 This usually gives 16.6 for B0M1A0	
(c)	M1	their answer to (b) – area of triangle with base 4 and height 7.5 or alternative correct me	ethod
		e.g. their answer to (b) $-\int_{1}^{4} \left(7.5 - \frac{7.5}{4}x\right) dx$ (Even if this leads to a negative answer) This	may be
		implied by a correct answer or by an answer where they have subtracted 15 from their and	
		part (b). Must use answer to part (b).	
	A1	5.75 or fraction equivalent e.g. $5\frac{3}{4}$ or $\frac{23}{4}$	

Question Number		Scheme		Marks			
7. (a)	$\left\{ \int \left(3x - x^{\frac{3}{2}}\right)^{\frac{3}{2}} dx - x^{\frac{3}{2}} dx \right\}$	$dx = \frac{3x^2}{2} - \frac{x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} \{+c\}$	Either $3x \to \pm \lambda x^2$ or $x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}$, λ , $\mu \neq 0$ At least one term correctly integrated Both terms correctly integrated	M1 ~			
(b)	$0=3x-x^{\frac{3}{2}}$	$\Rightarrow 0 = 3 - x^{\frac{1}{2}} \text{or} 0 = x \left(3 - x^{\frac{1}{2}}\right) \Rightarrow x = \dots$	Sets $y = 0$, in order to find the correct $x^{\frac{1}{2}} = 3$ or $x = 9$	M1			
		$\left[\frac{3x^2}{2} - \frac{2}{5}x^{\frac{5}{2}}\right]_0^9$					
	$=\left(\frac{3(9)^2}{2}\right)$	$\left(\frac{2}{5}\right)(9)^{\frac{5}{2}} - \{0\}$	Applies the limit 9 on an integrated function with no wrong lower limit .	ddM1			
	$\left\{ = \left(\frac{243}{2} - \frac{4}{2}\right)^{-1}\right\}$	$\left(\frac{86}{5}\right) - \left\{0\right\} = \frac{243}{10} \text{ or } 24.3$	$\frac{243}{10}$ or 24.3	A1 oe			
			,	[3] 6			
		Question 7	Notes				
(a)	M1	Either $3x \to \pm \lambda x^2$ or $x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}$, λ , $\mu \neq 0$					
	1st A1	At least one term correctly integrated. Can be simplified. Then isw.	simplified or un-simplified but power must be	e			
	2 nd A1	Both terms correctly integrated. Can be un-sidenominator and power should be a single nurthere are errors simplifying. Ignore the omissi	nber. (e.g. 2 - not 1+1) Ignore subsequent wo	rk if			
(b)	1st M1	Sets $y = 0$, and reaches the correct $x^{\frac{1}{2}} = 3$ or Just seeing $x = \sqrt{3}$ without the correct $x^{\frac{1}{2}} = 3$		5)			
	ddM1	Use of trapezium rule to find area is M0A0 as hence implies integration needed. This mark is dependent on the two previous method marks and needs both to have been awarded. Sees the limit 9 substituted in an integrated function. (Do not follow through their value of x) Do not need to see MINUS 0 but if another value is used as lower limit – this is M0. This mark may be implied by 9 in the limit and a correct answer.					
	A1	$\frac{243}{10}$ or 24.3					
	Common Error	Common Error $0 = 3x - x^{\frac{3}{2}} \Rightarrow x^{\frac{1}{2}} = 3$ so $x = 3x + 3x = 3$ Then uses limit $\sqrt{3}$ etc gains M1 M0 A0					

Question Number	Scheme	Marks
	May mark (a) and (b) together	
6. (a)	Expands to give $10x^{\frac{3}{2}} - 20x$	B1
	Integrates to give $\frac{10}{\frac{5}{2}} x^{\frac{5}{2}} + \frac{-20}{2} (+c)$	M1 A1ft A1cao
	Simplifies to $4x^{\frac{5}{2}} - 10x^2 + c$	Alcao (4)
(b)	Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted)	M1
	Use limits 4 and 9 either way round on their integrated function	dM1
	Obtains either ± -32 or ± 194 needs at least one of the previous M marks for this to be awarded	A1
	(So area = $\left \int_{0}^{4} y dx \right + \int_{4}^{9} y dx$) i.e. 32 + 194, = 226	ddM1,A1 (5) [9]

Notes

(a) B1: Expands the bracket correctly

M1: Correct integration process on at least one term after attempt at multiplication. (Follow correct expansion or one slip resulting in $10x^k - 20x$ where k may be $\frac{1}{2}$ or $\frac{5}{2}$ or resulting in $10x^{\frac{3}{2}} - Bx$, where B may be 2 or 5)

So
$$x^{\frac{1}{2}} \to \frac{x^{\frac{1}{2}}}{\frac{5}{2}}$$
 or $x^{\frac{1}{2}} \to \frac{x^{\frac{1}{2}}}{\frac{3}{2}}$ or $x^{\frac{4}{2}} \to \frac{x^{\frac{1}{2}}}{\frac{7}{2}}$ and/or $x \to \frac{x^2}{2}$.

A1: Correct unsimplified follow through for both terms of their integration. Does not need (+ c)

A1: Must be simplified and correct– allow answer in scheme or $4x^{\frac{1}{2}} - 10x^2$. Does not need (+ c)

(b) M1: (does not depend on first method mark) Attempt to substitute 4 into their integral (however obtained but must not be differentiated) or seeing their evaluated number (usually 32) is enough – do not need to see minus zero.

dM1: (depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and 9

 $A \times 9^{\frac{5}{2}} - B \times 9^2$ with $A \times 4^{\frac{5}{2}} - B \times 4^2$ is enough – or seeing 162 –(-32) {but not 162 – 32}

A1: At least one of the values (32 and 194) correct (needs just one of the two previous M marks in (b)) or may see 162 + 32 + 32 or 162 + 64 or may be implied by correct final answer if not evaluated until last line of working

ddM1: Adds 32 and 194 (may see 162 + 32 + 32 or may be implied by correct final answer if not evaluated until last line of working). This depends on everything being correct to this point.

Alcao: Final answer of 226 not (- 226)

Common errors: $4 \times 4^{\frac{5}{2}} - 10 \times 4^2 + 4 \times 9^{\frac{5}{2}} - 10 \times 9^2 - 4 \times 4^{\frac{5}{2}} - 10 \times 4^2 = \pm 162$ obtains M1 M1 A0 (neither 32 nor 194 seen and final answer incorrect) then M0 A0 so 2/5

Uses correct limits to obtain -32 +162 +32 = +/-162 is M1 M1 A1 (32 seen) M0 A0 so 3/5

Special case: In part (b) Uses limits 9 and 0 = 972 - 810 - 0 = 162 M0 M1 A0 M0A0 scores 1/5 This also applies if 4 never seen.

Question Number		Scheme							
	x	1	1.25	1.5	1.75	2			
	y	1.414	1.601	1.803	2.016	2.236			
1.(a)	$\{ \text{At } x = 1.25, \} $	= 1.601	(only)			the table and can of their working in	B1 cao		
		10 B							
	$\frac{1}{2}$ ×0.	25;×{1.4	14 + 2.236+	2(their 1.60	1+1.803 + 2	2.016)}	B1; M1 A1ft		
	B1; for using $\frac{1}{2} \times 0.25$ or equivalent.	or 1/8	50c 20c	ructure of	as show	or the correct expression vn following through ate's y value found in			
(b)	value and the second by values in the table womit one value from 2 allowed (nb: an extra are x values instead of A1ft: for the correct unfound in part (a). Bracketing mistakes: e $\left(\frac{1}{2} \times \frac{1}{4}\right) (1.414 + 2.23)$ Both score B1 M1 A0 correctly (then full man Alternative: Separate trapezia may $\left[\frac{1}{8}(1.414+1.60)\right]$ B1 for $\frac{1}{8}$ (aef), M1 for $\left\{=\frac{1}{8}(14.49)\right\} = 1.8112$	racket to ith no add $()$ bra repeated to values. Inderlined a.g. $(236)+2($ the unless the rescale $(236)+2($ the rescale $(236)+2($ the unless the rescale $(236)+2($ the	be multiplied litional value cket this materm, however their 1.601+1 litinal answer be given). Ind this can be 601+1.803) tructure, 1st answer only	d by 2 and to es. If the only be regarded er, forfeits the s shown follow +1.803 + 2.01 +1.803 + 2.01 e marked eq $+\frac{1}{8}(1.803 - 2.01)$ A1ft for containing the formula of the containing the con	ds to contain to be the sum by mistake is ed as a slip as M mark). owing through the contain the con	a first y value plus last y mation of the remaining a copying error or is to and the M mark can be M0 if any values used gh candidate's y value 29625) 275) ion has been done (2.016+2.236) ion, ft their 1.601	A1		
							[4]		
							Total 5		

Question Number	Scheme				
4.	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$	M1: $x^n \to x^{n+1}$ A1: At least one of either $\frac{x^4}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$. A1: $\frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$ or equivalent. e.g. $\frac{x^4}{4} + \frac{x^{-1}}{3}$ (they will lose the final mark if they cannot deal with this correctly)	MIAIAI		
	Note that some candidates may change $\int \frac{x^3}{6} + \frac{1}{3x^2} dx = \int 3x^5 + 6dx$ in which case all function and allow the	the function prior to integrating e.g. allow the M1 if $x^n o x^{n+1}$ for their changed			
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{\left(\sqrt{3}\right)^{-1}}{-1(3)} \right) - \left(\frac{\left(1\right)^{4}}{24} + \frac{\left(1\right)^{-1}}{-1(3)} \right)$				
	2^{nd} dM1: For using limits of $\sqrt{3}$ and 1 on an int way round. The 2^{nd} M1 is dependent				
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24} - \frac{1}{3}\right) = \frac{2}{3} - \frac{1}{9}\sqrt{3}$	$\frac{2}{3} - \frac{1}{9}\sqrt{3}$ or $a = \frac{2}{3}$ and $b = -\frac{1}{9}$. Allow equivalent fractions for a and/or b and 0.6 recurring and/or 0.1 recurring but do not allow $\frac{6-\sqrt{3}}{9}$	Alcso		
	This final mark is cao and cso – there	must have been no previous errors			
	Common Errors (U	Isnally 3 out of 5)	Total 5		
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) \mathrm{d}x \right\} = \int \left(\frac{x^3}{6} + 3x \right) \mathrm{d}x$	a^{-2} $dx = \frac{x^4}{6(4)} + \frac{3x^{-1}}{(-1)} M1A1A0$			
	$\left\{ \int_{1}^{\sqrt{5}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{3\left(\sqrt{3}\right)^{-1}}{-1} \right) - \left(\frac{\left(1\right)^{4}}{24} + \frac{3\left(1\right)^{-1}}{-1} \right) dM 1$				
	$= \left(\frac{9}{24} - \frac{3}{\sqrt{3}}\right) - \left(\frac{1}{24} + \frac{3}{-1}\right) = \frac{10}{3} - \sqrt{3} \text{A0}$				
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \int \left(\frac{x^3}{6} + (3x)^{-2} \right) dx = \frac{x^4}{6(4)} + \frac{(3x)^{-1}}{(-1)} M1A1A0$				
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^4}{24} + \frac{\left(3\sqrt{3}\right)^{-1}}{-1} \right) - \left(\frac{\left(1\right)^4}{24} + \frac{(3\times1)^{-1}}{-1} \right) dM 1$				
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24}\right)$. 5/ 5 /			
	Note this is the correct answer	r but follows incorrect work.			

Question

Number					Scheme					Marks
4.	x	0	0.5	1	1.5	2	2.5	3		
7.	y	5	4	2.5	1.538	1	0.690	0.5		
(a)	$\left\{ \operatorname{At} x = 1 \right\}$.5, y = 1	.538 (only))						B1 cao
										[1]
(b)	$\frac{1}{2}$ ×0.5;									B1 oe
	{5-	+ 0.5 + 2(4 + 2.5 + t	heir 1.538	+1+0.690)} .538+1+0.6		For structur	re of {	<u>}</u> ;	M1 <u>A1ft</u>
	$\frac{1}{2} \times 0.5 \times $	(5 + 0.5)	+2(4+2.	5 + their 1	.538 + 1 + 0.69	$90)$ $\{=\frac{1}{4}($	(24.956) = 6	5.239 } = aw	rt 6.24	A1
										[4]
	A 44- A	CD4-	1 6	-+ :+1	24 [413 4				241
(c)					$= 3 \times 4$ or [-0				M1
	_				"18.239"} = "8					Alft
	N.B. / × 4	+ previou	us answer	is MUAU (added 4 seven	times beca	use / numt	ers in table	:)	[2]
					Notes for (Duestion 4				,
(a)	B1: 1.538					¿ucstion i				
(b)	B1: for us	_	-	_						
	_				tructure. It ne					
	the table v	vith no ad is may be	ditional va regarded a	ilues. If thas a slip ar	Itiplied by 2 ar he only mistak nd the M mark brackets are x	e is a copy can be all	ing error or owed (An	is to omit extra repeat	one value f	from 2nd
	A1ft: for t	he correct	t bracket {	} follo	wing through	candidate's	y value for	und in part	(a).	
	A1: for an NB: Separ				for 0.25, M1 f	for 1/2 h(a	+ <i>b</i>) used 5	or 6 times	(and A1ft	if it is all
	correct) T	hen Al a	s before.							
	_				(5+0.5)+2(4					
					the calculation licates this erro		one correct	ly (then ful	l marks ca	n be
(c)	M1: Relat	es <mark>previo</mark>	us answer	(not inte	egral of previous geometry to fi	us answer			tegrating 4	1
	Alft: for l		_	by using	geometry to II	na rectangi	c and addir	ıg.		
Alternative	I			_	(b)- using the t					
method	Get: M1 fe	or "their	$\frac{1}{6}$ "× $\left\{9+4.\right\}$.5 + 2(8 + 6)	5.5 + their 5.53	38 + 5 + 4.6	$ 90\rangle$ = (stru	icture must	be correct	- allow
(c)	one copyii	ng error o	nly)							
	And A1ft:	ior awrt	18.24 (or	12 + previ	ous answer).					

Marks

Question Number	Scho		Marks			
9.	y = 27 - 2x					
(a)	6.272 , 3.634	4	Awrt in each case	B1, B1		
	Special case 6.27 an	d 3.63 scores B1B0				
				(2)		
(b)	$\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$			B1		
	$\{(0+0)+2(5.866+"6.272"+5.210+6.272"+5.210-6.270-6.270"+5.210-6.270"+5.210-6.270"+5.210-6.270"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.210-6.20"+5.2$		Need {} or implied later for A1ft	M1A1ft		
	(0+0) may be implied if omitted and t		3 6			
	otherwise correct expression and allow		copied term in the			
	2() bracket for	the method mark				
	$\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6.2$					
	Unless followed by an answer that imp B1M1A0A0 (Usually impli	ed by an answer of 4	5.676)			
	$\frac{1}{2} \times 0.5 \{ (0+0) + 2(5.866 + "6.50) \}$	272"+ 5.210 + "3.634	4"+1.856)}			
	$=\frac{1}{4}\times 4$	5.676				
	= 11.42	cao		A1		
	Separate trapezia may be used : B1 for	-b) used 5 or 6				
	times (and A1ft all correct)					
	NB $\frac{1}{2} \times 0.5 \{ (0+0) + 2(0+5.866 + "6.266) \}$	272"+ 5.210 + "3.634	4"+1.856+0)}			
	Sco	res B1M0A0A0				
	Correct answer	with no working sco	res 0/4			
				(4)		
		M1: $x^n \to x^{n+1}$ on A1: $27x - x^2$	any term			
	$\int y dx = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1} \left(+c \right)$	A1: $27x - x^2$		341414141		
	$\int y dx = 2/x - x - 6x^2 + 16x (+c)$	A1: $-6x^{\frac{3}{2}}$		MIAIAIAI		
		A1: $+16x^{-1}$				
(c)	Accept any correct and possibly unsimp in this order on Epen	olified versions for the	ne terms and mark			
		Attempt to subtrac	t either way			
	$ \left(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1} \right) $ $ - \left(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1} \right) $	round using the lin				
		Dependent on the p be implied by 48 –		dM1		
	$-(27(1)-(1)^2-6(1)^{\frac{2}{2}}+16(1)^{-1})$	need to check both				
	,	integration has err				
	= (48	T '				
	12	Cao (Penalise -12)	A1		
				(6)		
				[12]		

Question number	Scheme	Marks
7 (a)	x 0 0.25 0.5 0.75 1 y 1 1.251 1.494 1.741 2	B1, B1 (2)
(b)	$\frac{1}{2} \times 0.25$, $\{(1+2)+2(1.251+1.494+1.741)\}$ o.e.	B1, M1,A1 ft
	=1.4965	A1 (4) 6 marks
Notes	(a) first B1 for 1.494 and second B1 for 1.741 (1.740 is B 0) Wrong accuracy e.g. 1.49, 1.74 is B1B0	

(b) **B1:** Need ½ of 0.25 or 0.125 o.e.

M1: requires first bracket to contain first plus last values and second bracket to include no additional values from the three in the table. If the only mistake is to omit one value from second bracket this may be regarded as a slip and M mark can be allowed (An extra repeated term forfeits the M mark however)

x values: M0 if values used in brackets are x values instead of y values

Alft follows their answers to part (a) and is for {correct expression}

Final A1: Accept 1.4965, 1.497. or 1.50 only after correct work. (No follow through except one special case below following 1.740 in table)

Separate trapezia may be used : **B1** for 0.125, **M1** for $\frac{1}{2}h(a+b)$ used 3 or 4 times (and **A1**ft if it is all correct)

e.g.. 0.125(1+ 1.251) + 0.125(1.251+1.494) + 0.125(1.741 + 2) is **M1 A0** equivalent to missing one term in { } in main scheme

Special Case: Bracketing mistake: i.e. 0.125(1+2) + 2(1.251+1.494+1.741) scores **B1 M1 A0 A0 for 9.347** If the final answer implies that the calculation has been done correctly i.e. 1.4965 (then full marks can be given).

Need to see trapezium rule – answer only (with no working) is 0/4 any doubts send to review

Special Case; Uses 1.740 to give 1.49625 or 1.4963 or 1.496 or 1.50 gets, B1 B0 B1M1A1ft then A1 (lose 1 mark)

NB Bracket is 11.972

Question number	Scheme									Marks
6: (a)									_	
	x	1	1.5	2	2.5	3	3.5	4		
	y	16.5	7.361	4	2.31	1.278	0.556	0		B1, B1
										(2)
(b)	$\frac{1}{2} \times 0.5$, $\{(16.5+0)+2(7.361+4+2.31+1.278+0.556)\}$									B1, M1A1ft
			ers listed b							A1 (4)
(c)	$\int_{1}^{4} \frac{16}{x^{2}} -$	$\frac{x}{2} + 1 dx$	$x = \left[-\frac{16}{x} \right]$	$-\frac{x^2}{4} + x$]4					Ml Al Al
			=[-4-4+		-11					dM1
			$=11\frac{1}{4}$ or	equivaler	nt					Al
										(5) 11
Notes	(a) B1 for 4 or any correct equivalent e.g. 4.000 B1 for 2.31 or 2.310 (b) B1 : Need 0.25 or ½ of 0.5 M1 : requires first bracket to contain first y value plus last y value (0 may be omitted or be at end) and second bracket to include no additional y values from those in the scheme. They may									
			value as a		iotolio					
	1 1		se - Bracl)+2(7.36			8+0.556)	scores B	81 M1 A	0 A	unless the
	$\frac{1}{2}$ ×0.5(16.5+0)+2(7.361+4+2.31+1.278+0.556) scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks) A1ft: This should be correct but ft their 4 and 2.31 A1 : Accept 11.8775 or 11.878 or 11.88 only									
	(c) M1 A A1 tw	Attempt t	o integrate t terms, ne	ie power xt A1 all	increased three corr					
	(Allow $-16x^{-1} - 0.25x^2 + 1x$ or equivalent) dM1 (This cannot be earned if previous M mark has not been awarded) Uses limits 4 and 1 in their integrated expression and subtracts (either way round)									
Alternative Method for (b)	A1 11.25 or 11 $\frac{1}{4}$ or 45/4 or equivalent (penalise negative final answer here) Separate trapezia may be used: B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct for their "4" and "2.31") final A1 for 11.88 etc. as before									
	In part (b) Need to use trapezium rule – answer only (with no working) is 0/4 -any doubts send to review In part (c) need to see integration									

Question Number	Scheme				
6. (a)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	east one y-ordinate correct.	B1		
	At $\{x = 2.75, \}$ $y = 0.24$ (only)	Both y-ordinates correct.	B1		
			(2)		
	Out	side brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$	B1 aef		
	•	<u>structure of </u> {};	M1		
(b)	$\frac{1}{2} \times 0.25 ; \times \{0.5 + 0.2 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)\}$ inside be n	Correct expression de brackets which all must nultiplied by their "outside constant".	<u>A1</u> √		
	$\left\{ = \frac{1}{8}(2.54) \right\} = \text{awrt } 0.32$	awrt 0.32	A1		
			(4)		
(c)	Area of triangle = $\frac{1}{2} \times 1 \times 0.2 = 0.1$		B1		
	Area(S) = "0.3175" - 0.1		M1		
	= 0.2175		A1 ft		
			(3)		
			[9]		

Question Number	Scheme	Marks				
	<u>Notes</u>					
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.					
	M1 requires the correct {} bracket structure. This is for the first bracket to contain first	<i>y</i> -				
	ordinate plus last y-ordinate and the second bracket to be the summation of the remaining y- ordinates in the table.					
	No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate) are allowed in the second bracket and the second bracket must be multiplied by 2. Only one copying error is allowed here in the 2(0.38+ their 0.30+ their 0.24) bracket.					
	A1ft for the correct bracket {} following through candidate's y-ordinates found in part	(a).				
	A1 for answer of awrt 0.32.					
	Bracketing mistake: Unless the final answer implies that the calculation has been done	e				
	correctly					
	then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) + 0.2$					
	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$					
	or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$					

	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$ or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$ (nb: yielding final answer of 1.9275) so that the $(0.5 + 0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.
	Need to see trapezium rule – answer only (with no working) gains no marks. Alternative: Separate trapezia may be used, and this can be marked equivalently. (See appendix.)
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1. May be identified on the diagram. M1 for "part (b) answer" – "0.1 only" or "part (b) answer – their attempt at 0.1 only". (Strict
	attempt!) A1ft for correctly following through "part (b) answer" – 0.1. This is also dependent on the answer to (b) being greater than 0.1. Note: candidates may round answers here, so allow A1ft if they round their answer correct to 2 dp.

Jun 2010 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme	Marks
1.	(a) 2.35, 3.13, 4.01 (One or two correct B1 B0, all correct B1 B1) Important: If part (a) is blank, or if answers have been crossed out and no replacement answers are visible, please send to Review as 'out of clip'.	B1 B1 (2)
	(b) $\frac{1}{2} \times 0.2$ (or equivalent numerical value) $k \{(1+5)+2(1.65+p+q+r)\}$, k constant, $k \neq 0$ (See notes below) = 2.828 (awrt 2.83, allowed even after minor slips in values) The fractional answer $\frac{707}{250}$ (or other fraction wrt 2.83) is also acceptable. Answers with no working score no marks.	B1 M1 A1 A1 (4)

- (a) Answers must be given to 2 decimal places. No marks for answers given to only 1 decimal place.
- (b) The p, q and r below are positive numbers, none of which is equal to any of: 1, 5, 1.65, 0.2, 0.4, 0.6 or 0.8

M1 A1:
$$k\{(1+5)+2(1.65+p+q+r)\}$$

M1 A0: $k\{(1+5)+2(1.65+p+q)\}$ or $k\{(1+5)+2(p+q+r)\}$
M0 A0: $k\{(1+5)+2(1.65+p+q+r+othervalue(s))\}$

Note that if the only mistake is to <u>omit</u> a value from the second bracket, this is considered as a slip and the M mark is allowed.

Bracketing mistake: i.e.
$$\frac{1}{2} \times 0.2(1+5) + 2(1.65+2.35+3.13+4.01)$$

instead of
$$\frac{1}{2} \times 0.2\{(1+5) + 2(1.65 + 2.35 + 3.13 + 4.01)\}$$
, so that only

the (1+5) is multiplied by 0.1 scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).

Alternative:

Separate trapezia may be used, and this can be marked equivalently.

Question Number	Scheme								No	otes		Marks
3.	<u>x</u>	0 2	0.2	0.4		0.6		0.8	1	$y = \frac{0}{(2 + 1)^{2}}$	5	
	y		1.862542	<u> </u>	330	1.56981	1.4	1994	1.27165	(2+	· e ^x)	
(a)	${At x = }$	-,-	= 1.86254 (1.86254	B1 cao
			Note: Lool	c for this va	lue o	on the giver	ı tabl	e or in	their workir			[1]
									Outside	brackets -	$\frac{1}{2}$ × (0.2)	B1 o.e.
(b)	$\frac{1}{2}(0.2)$	2+1.271	65+2(their 1	.86254 + 1.	71830) + 1.56981	+ 1.41	994)]		or $\frac{1}{10}$ o		В1 о.е.
	For structure of []								Ml			
	$\left\{ = \frac{1}{10} (16.41283) \right\} = 1.641283 = 1.6413 (4 dp)$ anything that rounds to 1.6413								A1			
()												[3]
(c)	$u = e^x$	or $x = 1$	lnu♭}									
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x$	or $\frac{\mathrm{d}u}{\mathrm{d}x}$	$= u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u}$	$=\frac{1}{u}$ or de	u = u	dx etc., an	d Ò	$\frac{6}{(e^x + 2)}$	$\frac{1}{2}$ $dx = 0$ $\frac{1}{2}$	$\frac{6}{+2)u}$ du	See notes	B1 *
	${x = 0}$	Þ a=0	$e^0 \triangleright \underline{a=1}$						a=1 a	nd b = e o	$b = e^1$	D.I
	${x = 1}$	Þ <i>b</i> = e	$b = e^{1}$					or	evidence of	$0 \rightarrow 1$ and	d 1→e	B1
		N							work in par			[2]
			NOTE: 2 ⁿ	^d B1 mark	CA	N be recove	ered	for wo	rk in part (d)		
(d) Way 1	6	<u>A</u> -	$+\frac{B}{(u+2)}$	Writing	6	<u>A</u> +	B	} , o.	e. or $\frac{1}{u(u+1)}$	<u>P</u> +	$\frac{Q}{Q}$	
,, ay 1			` '									M1
	Þ 6	A(u+2))+Bu	o.e., and	a cc	implete me			ding the value their B (or a			
	u = 0 ‡	A = 3		Both t	heir	A=3 and			-3. (Or thei			
		$\triangleright B =$	-3						f 6 in front o	-		A1
	r 6		C (3	3)			Ī,	ntegrat	es $\frac{M}{u} \pm \frac{\lambda}{u+1}$	M N	k 1 0:	
	$\frac{0}{u(u+1)}$	$\frac{1}{(2)}$ du =	$=$ $\int \left(\frac{3}{u} - \frac{3}{(u)}\right)$	$\frac{3}{+2}$ du								M1
	5 (-)	• ((. 2)/					artial fraction			
			$3\ln u - 3\ln u$		Int				$u \ln(\beta(u \pm k))$ is correctly			
		or =	$= 3 \ln 2u - 31$	n(2u+4)	IIII				rom their M			A1 ft
	So [31	ln <i>u</i> – 31	n(u+2) ₁					•	dependent o			
			(e+2) $-(31)$			(or their b	and th	neir a.	Appli where $b > 0$	es limits of b^{-1} 1 , $a > b^{-1}$		dM1
	•		r considerati		+				of 1 and 0 in			divii
			required for							correct wa		
	= $3-3\ln(e+2)+3\ln 3$ or $3(1-\ln(e+2)+\ln 3)$ or $3+3\ln\left(\frac{3}{e+2}\right)$											
	or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right)$ or $3 - 3\ln\left(\frac{e+2}{3}\right)$ or $3\ln\left(\frac{3e}{e+2}\right)$ or $\ln\left(\frac{27e^3}{(e+2)^3}\right)$ see notes							A1 cso				
						ace of e fo						[6]
						-	_		unless reco			12
									has not been			
	Note: C	Give fina	l A0 for 3lr	ne-3ln(e+	-2)+	- 3ln3, whe	re 31	ne ha	s not been si	mplified to	3	

		Question 3 Notes
3. (b)	Note	M1: Do not allow an extra y-value or a repeated y value in their []
		Do not allow an omission of a y-ordinate in their [] for M1 unless they give the correct answer of
	3 7 4	awrt 1.6413, in which case both M1 and A1 can be scored.
	Note	A1: Working must be seen to demonstrate the use of the trapezium rule.
	NI-4-	(Actual area is 1.64150274)
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)
	Note	Award B1M1A1 for
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$
	Bracke	eting mistakes: Unless the final answer implies that the calculation has been done correctly
		B1M0A0 for $\frac{1}{2}$ (0.2) + 2 + 2(their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)
	Award	B1M0A0 for $\frac{1}{2}$ (0.2)(2 + 1.27165) + 2(their 1.86254 + 1.71830 + 1.56981 + 1.41994) (=13.468345)
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2) + 2$ (their $1.86254 + 1.71830 + 1.56981 + 1.41994$) $+ 1.27165$ (=14.61283)
	Altern	ative method: Adding individual trapezia
		$0.2 \times \left[\frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2} \right]$
		1.641283
	B1	0.2 and a divisor of 2 on all terms inside brackets
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2
	A1	anything that rounds to 1.6413
3. (c)	1st B1	Must start from either
		• $\partial y dx$, with integral sign and dx
		• $0 \frac{6}{(e^x + 2)} dx$, with integral sign and dx
		• $0 \frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$
		and end at $\int_0^\infty \frac{6}{u(u+2)} du$, with integral sign and du , with no incorrect working.
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\partial \frac{6}{(e^x + 2)} dx = \partial \frac{6}{u(u+2)} du$ is sufficient for 1st B1
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^1$
	Note	You can also give the 1st B1 mark for using a reverse process. i.e.
		Proceeding from $\partial \frac{6}{u(u+2)} du$ to $\partial \frac{6}{(e^x+2)} dx$, with no incorrect working,
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$ Give final A0 for $3 - 3\ln(e + 2) + 3\ln 3$ simplifying to $1 - \ln(e + 2) + \ln 3$
3. (d)	Note	Give final A0 for $3-3\ln(e+2)+3\ln 3$ simplifying to $1-\ln(e+2)+\ln 3$
		(i.e. dividing their correct final answer by 3)
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0
	Note	$\left[-3\ln(u+2)+3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0
		:

		Question 3 Notes Continued					
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.					
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1st M1					
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.					
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.					
	Note	Award M0A0M1A1ft for a candidate who writes down					
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$					
	AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.						
	Note	Award M0A0M0A0 for a candidate who writes down					
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.					
	Note	Award M1A1M1A1 for a candidate who writes down					
		$ \grave{0}\frac{6}{u(u+2)}\mathrm{d}u = 3\ln u - 3\ln(u+2) $					
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.					
	Note	If they lose the "6" and find $\int_{1}^{c} \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0					

		Question	3 Notes Continued		
3. (d) Way 2	$ \begin{cases} \int \frac{6}{u^2 + 2u} du = \int \frac{3(2u + 2)}{u^2 + 2u} \end{cases} $	$\mathrm{d}u - \int \frac{6u}{u^2 + 2u} \mathrm{d}u \bigg\}$			
	$= \int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du$	u $0^{\frac{\pm \alpha}{u}}$	$\frac{(2u+2)}{(2u+2)^2+2u}\left\{du\right\}\pm\grave{0}\frac{\delta}{u+2}\left\{du\right\},\ \alpha,\beta,\delta\neq0$	Ml	
	$\int u^2 + 2u$ $\int u + 2$		Correct expression	Al	
1941	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$		$\frac{(2u+2)}{(2u+2u)} \pm \frac{N}{u\pm k}, M, N, k \stackrel{1}{=} 0, \text{ to obtain}$ of $\pm \lambda \ln(u^2 + 2u)$ or $\pm \mu \ln(\beta(u\pm k));$ $\lambda, \mu, \beta \stackrel{1}{=} 0$	MI	
		Integration of both	terms is correctly followed through from their M and from their N	Al ft	
	$\begin{cases} \operatorname{So}, \left[3\ln(u^2 + 2u) - 6\ln(u + u) \right] \end{cases}$		dependent on the 2^{nd} M mark Applies limits of e and 1 (or their b and their a, where $b > 0, b^{-1}$ 1, $a > 0$) in u	dM1	
	$= (3\ln(e^2 + 2e) - 6\ln(e + 2))$	- (3ln3-6ln3)	or applies limits of I and 0 in x and subtracts the correct way round.		
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	- 3ln3	$3\ln(e^2+2e)-6\ln(e+2)+3\ln 3$	Al o.e.	
					[6

3. (d)	Applying $u = \theta - 1$				
Way 3	$\left\{ \int_{1}^{e} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)} d\theta = \int_{2}^{1+e} \frac{6}{\theta^2 - 1} du = \left[3\ln\left(\frac{1}{\theta} + \frac{1}{\theta}\right) \right] d\theta$	$\left[\frac{\theta-1}{\theta+1}\right]_{2}^{1+e}$		MIAIMI	A1
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-1}{2+1}\right) = 3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right)$	3 rd M mark i on	s dependent 2 nd M mark	dM1A1	
					[6]

Question Number	Scheme	Notes	Marks	
5.	$y = e^x + 2e^{-x}, x^3 0$			
Way 1	$\left\{V=\right\}\pi \int_{0}^{\ln 4} \left(e^{x}+2e^{-x}\right)^{2} dx$	For $\pi \int (e^x + 2e^{-x})^2$	B1	
	- 0	Ignore limits and dx . Can be implied.		
	() Cln4	Expands $(e^x + 2e^{-x})^2 \rightarrow \pm \alpha e^{2x} \pm \beta e^{-2x} \pm \delta$ where		
	$= \{\pi\} \int_0^{\ln 4} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	$\alpha, \beta, \delta \neq 0$. Ignore π , integral sign, limits and dx. This can be implied by later work.	M1	
		Integrates at least one of either $\pm \alpha e^{2x}$ to give $\pm \frac{\alpha}{2} e^{2x}$	MI	
	$= \left\{ \pi \right\} \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]^{\ln 4}$	or $\pm \beta e^{-2x}$ to give $\pm \frac{\beta}{2} e^{-2x} \alpha, \beta^{-1} 0$		
		dependent on the 2 nd M mark		
		$e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x}$	A1 J	
		which can be simplified or un-simplified		
		$4 \rightarrow 4x \text{ or } 4e^0x$	B1 cao	
	$= \left\{\pi\right\} \left[\left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2} e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) \right] $	dependent on the previous method mark. Some evidence of applying limits of ln 4 o.e. and 0 to a changed function in x and subtracts the correct way round. Note: A proper consideration of the limit of 0 is required.	dM1	
	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$			

	($= \frac{75}{8}\pi + 4\pi \ln 4 \text{ or } \frac{75}{8}\pi + 8\pi \ln 2 \text{ or } \pi \left(\frac{75}{8} + 4\ln 4\right) \text{ or } \pi \left(\frac{75}{8} + 8\ln 2\right)$ or $\frac{75}{8}\pi + \ln 2^{8\pi} \text{ or } \frac{75}{8}\pi + \pi \ln 256 \text{ or } \ln \left(2^{8\pi} e^{\frac{75}{8}\pi}\right) \text{ or } \frac{1}{8}\pi \left(75 + 32\ln 4\right), \text{ etc}$	A1 isw						
			[7]						
		0 4 534	7						
	N-4-	Question 5 Notes							
5.	Note	π is only required for the 1 st B1 mark and the final A1 mark.							
	Note	Give 1st B0 for writing $\pi \partial_0 y^2 dx$ followed by $2\pi \partial_0 (e^x + 2e^{-x})^2 dx$							
	Note	Give 1st M1 for $(e^x + 2e^{-x})^2 \rightarrow e^{2x} + 4e^{-2x} + 2e^0 + 2e^0$ because $\delta = 2e^0 + 2e^0$							
	Note	A decimal answer of 46.8731 or $\pi(14.9201)$ (without a correct exact answer) is A	70						
	Note $\pi \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_0^{\ln 4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0								
	Note	Allow exact equivalents which should be in the form $a\pi + b\pi \ln c$ or $\pi(a + b \ln c)$,							
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375. Do not allow $a = \frac{150}{16}$ or $9\frac{6}{16}$							
	Note	Give B1M0M1A1B0M1A0 for the common response							
		$\pi \int_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx \to \pi \int_{0}^{\ln 4} \left(e^{2x} + 4e^{-2x} \right) dx = \pi \left[\frac{1}{2} e^{2x} - 2e^{-2x} \right]_{0}^{\ln 4} = \frac{75}{8} \pi$							

Question Number	Scheme			Notes	Marks	
5.	$y = e^x + 2e^{-x}, x^3 0$					
Way 2	$\left\{V=\right\} \pi \int_{0}^{\ln 4} \left(e^{x}+2e^{-x}\right)^{2} dx$			For $\pi \int (e^x + 2e^{-x})^2$	B1	
	•		Ignore limit	s and dx. Can be implied.		\Box
	$u = e^x \triangleright \frac{du}{dx} = e^x = u \text{ and } x = \ln 4$	$b \ u = 4, x = 0$	$b u = e^0 = 1$			
	$V = \left\{ \pi \right\} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \left\{ \pi \right\} \int_{1}^{4} du$	$V = \left\{\pi\right\} \int_{1}^{4} \left(u + \frac{2}{u}\right)^{2} \frac{1}{u} du = \left\{\pi\right\} \int_{1}^{4} \left(u^{2} + \frac{4}{u^{2}} + 4\right) \frac{1}{u} du$				
	C ⁴ ($\left(\frac{1}{2}\right)^{2} \rightarrow \pm \alpha u \pm \beta u^{-3} \pm \delta u^{-1}$		
	$= \left\{\pi\right\} \int_{1}^{4} \left(u + \frac{4}{u^{3}} + \frac{4}{u}\right) \mathrm{d}u$		Ignore π , in	where $u = e^x$, α , β , $\delta \neq 0$. Integral sign, limits and du . In the implied by later work.	<u>M1</u>	
		Integrates	s at least one of	either $\pm \alpha u$ to give $\pm \frac{\alpha}{2} u^2$	M1))	
	Γ ₁ 2 3 ⁴	or ±βι		$a^{-2} \alpha, \beta^{-1} 0$, where $u = e^x$		
	$= \{\pi\} \left[\frac{1}{2} u^2 - \frac{2}{u^2} + 4 \ln u \right]^4$		depe	endent on the 2nd M mark		
	$u + 4u^{-3} \rightarrow \frac{1}{2}u^2$		$u + 4u^{-3} \rightarrow \frac{1}{2}u^2 - 2u^{-2}$	A1		
			simplified or un	n-simplified, where $u = e^x$		
			4	$u^{-1} \rightarrow 4 \ln u$, where $u = e^x$	B1 cao	

$= \left\{\pi\right\} \left[\left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4\right) - \left(\frac{1}{2} (1)^2 - \frac{2}{(1)^2} + 4 \ln 1\right) \right]$	dependent on the previous method mark. Some evidence of applying limits of 4 and 1 to a changed function in u [or ln 4 o.e. and 0 to an integrated function in x] and subtracts the correct way round.	_{dM1}
$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$		
$= \frac{75}{8}\pi + 4\pi \ln 4 \text{ or } \frac{75}{8}\pi + 8\pi \ln 2 \text{ or } \pi \left(\frac{75}{8}\pi\right)$ or $\frac{75}{8}\pi + \ln 2^{8\pi} \text{ or } \frac{75}{8}\pi + \pi \ln 256 \text{ or } \ln \left(2^{8\pi}\right)$		A1 isw
		[7]

Way 1 $\int \frac{dh}{\sqrt{(h-9)}} = \int k dt$ Separates the variables correctly. dh and dt should not be in the wrong positions, although this mark can be implied by later working. Ignore the integral signs. $\int (h-9)^{-\frac{1}{2}} dh = \int k dt$ Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ on the integral signs. $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt (+c)$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{ with/without } + c, \text{ Al}$ or equivalent, which can be un-simplified or simplified. Some evidence of applying both $t=0$ and $h=200$ to changed equation containing a constant of integration, e.g. c or A . $ b c = 2\sqrt{191} b 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $ b c = 2\sqrt{191} b 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $ b c = 2\sqrt{191} - 20\sqrt{41}$ or $t = 20\sqrt{191} - 20\sqrt{41}$ is to find the value of $t = 1$. $t = 20\sqrt{191} - 20\sqrt{41}$ is to find the value of $t = 1$. $t = 20\sqrt{191} - 20\sqrt{41}$ is to or awrt 148.	Question Number	Scheme			Notes	Ma	rks
into the printed equation and rearranges to give $k =$ so, $k = -\frac{1}{10}$ or -0.1 $k = -\frac{1}{10}$ or -0.1 A1 (b) Way 1 $\int \frac{dh}{\sqrt{(h-9)}} = \int k dt$ Separates the variables correctly. dh and dt should not be in the wrong positions, although this mark can be implied by later working. Ignore the integral signs. $\int (h-9)^{\frac{1}{2}} dh = \int k dt$ Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ, μ^{-1} 0 M1 $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt (+c)$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{with/without } + c, \text{ and } h = 200 \text{ to changed equation containing a constant of integration, e.g. } cor A$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2\sqrt{191}$ $ h-2 = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (h-1) + 2$	7.	$\frac{\mathrm{d}h}{\mathrm{d}t} = k\sqrt{(h-9)}, 9 < h \le 200;$	$h = 130, \ \frac{\mathrm{d}h}{\mathrm{d}t} = -1$	1.1			
so, $k = -\frac{1}{10}$ or -0.1 $k = -\frac{1}{10}$ or -0.1 A1 (b) Way 1 $\int \frac{dh}{\sqrt{(h-9)}} = \int k dt$ Separates the variables correctly. dh and dt should not be in the wrong positions, although this mark can be implied by later working. Ignore the integral signs. $\int (h-9)^{-\frac{1}{2}} dh = \int k dt$ Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ^{-1} 0 M1 $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt (+c)$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{ with/without } + c, \text{ A1}$ or equivalent, which can be un-simplified or simplified. Some evidence of applying both the 0 and $h = 200 \text{ to changed equation containing a constant of integration, e.g. c or A Applies h = 50 \text{ and their value of } c to their changed equation and rearranges to find the value of t = t = 20\sqrt{191} - 20\sqrt{41} or t = 20\sqrt{191} - 20\sqrt{41} is wor t = 148.3430145 = 148 \text{ (minutes) (nearest minute)} A1 cso$	(a)	$-1.1 = k \sqrt{(130-9)} $ Þ $k =$			$\mathbf{d}I$ $\mathbf{d}I$	M1	
Way 1 $\int \frac{dh}{\sqrt{(h-9)}} = \int k dt$ Separates the variables correctly. dh and dt should not be in the wrong positions, although this mark can be implied by later working. Ignore the integral signs. $\int (h-9)^{-\frac{1}{2}} dh = \int k dt$ Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ of M1 $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt (+c)$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{ with/without } + c, \text{ All or equivalent, which can be un-simplified.}}$ Some evidence of applying both $t = 0$ and $t = 0$ 0 to changed equation containing a constant of integration, e.g. $t = 0$ or $t = 0$ and $t = 0$ 0 to changed equation $t = 0$ 0. The equivalent of $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to changed equation $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the equivalent of $t = 0$ 0 and $t = 0$ 0 to the			into the p	orinted equ	ation and rearranges to give $k =$		
Way 1 $\int \frac{dh}{\sqrt{(h-9)}} = \int k dt$ Separates the variables correctly. dh and dt should not be in the wrong positions, although this mark can be implied by later working. Ignore the integral signs. $\int (h-9)^{-\frac{1}{2}} dh = \int k dt$ Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ on the integral signs. $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt (+c)$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt or \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{ with/without } + c, \text{ Al}$ or equivalent, which can be un-simplified or simplified. Some evidence of applying both $t=0$ and $h=200$ to changed equation containing a constant of integration, e.g. c or A . $ b c = 2\sqrt{191} b 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $ b c = 2\sqrt{191} b 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $ b c = 2\sqrt{191} - 20\sqrt{41}$ or $t = 20\sqrt{191} - 20\sqrt{41}$ is to find the value of $t = 1$. $t = 20\sqrt{191} - 20\sqrt{41}$ is to find the value of $t = 1$. $t = 20\sqrt{191} - 20\sqrt{41}$ is to or awrt 148.		so, $k = -\frac{1}{10}$ or -0.1			$k = -\frac{1}{10}$ or -0.1	A1	
the wrong positions, although this mark can be implied by later working. Ignore the integral signs. $\int (h-9)^{-\frac{1}{2}} dh = \int k dt$ Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ ¹ 0 M1 $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt \ (+c)$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt \ or \ \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{with/without } + c, \text{Al}$ or equivalent, which can be un-simplified or simplified. Some evidence of applying both $t=0$ and $h=200$ to changed equation containing a constant of integration, e.g. c or A $\{h=50\Rightarrow\} 2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ $\{h=50\Rightarrow\} 2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ or $t=20\sqrt{191} - 20\sqrt{41}$ or $t=20\sqrt{191} - 20\sqrt{41}$ isw of $t=20\sqrt{191} - 20\sqrt{41}$ isw or $t=148.3430145=148$ (minutes) (nearest minute)							[2]
Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ of M1 $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt + c$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{ with/without } + c, \text{ or equivalent, which can be un-simplified or simplified.}$ Some evidence of applying both $t=0$ and $t=0$ to changed equation containing a constant of integration, e.g. $t=0$ or $t=0$ and $t=0$ or $t=0$ and $t=0$ or $t=0$ and $t=0$ or $t=0$ o	(b)	f dh f	Separates the var	riables corr	rectly. dh and dt should not be in		
Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ of M1 $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt + c$ $\frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{(\frac{1}{2})} = (\text{their } k)t, \text{ with/without } + c, \text{ or equivalent, which can be un-simplified or simplified.}$ Some evidence of applying both $t=0$ and $t=0$ to changed equation containing a constant of integration, e.g. $t=0$ or $t=0$ and $t=0$ or $t=0$ and $t=0$ or $t=0$ and $t=0$ or $t=0$ o	3 /	$\frac{1}{\sqrt{(h-\Omega)}} = k dt$	the wrong po			B1	
Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; λ , μ of M1 $\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without } + c, \text{ A1}$ or equivalent, which can be un-simplified or simplified. Some evidence of applying both $t=0$ and $h=200$ to changed equation containing a constant of integration, e.g. c or A $ b c = 2\sqrt{191} b 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $ b c = 50 \Rightarrow 2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ $ c = 20\sqrt{191} - 20\sqrt{41}$ or $t=148.3430145=148$ (minutes) (nearest minute) $ c = 2\sqrt{191} - 20\sqrt{41} \text{ isw}$ or $t=148.3430145=148$ (minutes) (nearest minute)	way 1	$J\sqrt{(n-9)}$		later	working. Ignore the integral signs.		
$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without } + c, \text{ A1}$ or equivalent, which can be un-simplified or simplified. Some evidence of applying both $t=0$ and $h=200$ to changed equation containing a constant of integration, e.g. c or A $ \begin{vmatrix} b & c & 2\sqrt{191} & b & 2(h-9)^{\frac{1}{2}} & = -0.1t + 2\sqrt{191} \\ \{h=50 \Rightarrow\} & 2\sqrt{(50-9)} & = -0.1t + 2\sqrt{191} \\ t= \dots \end{vmatrix} $ $ \begin{vmatrix} t & 20\sqrt{191} & -20\sqrt{41} \\ \text{or } t & = 148.3430145 & = 148 \text{ (minutes) (nearest minute)} \end{vmatrix} $ $ \begin{vmatrix} (h-9)^{\frac{1}{2}} & = (\text{their } k)t, \text{ with/without } + c, \\ A1 & or equivalent, which can be un-simplified or simplified. Some evidence of applying both t=0 and t=0 and t=0 or a t=0 and t=0 or a t=0 and t=0 or and t=0 or a t=0 and t=0 or a t=0 or $		$\int (h-9)^{-\frac{1}{2}} \mathrm{d}h = \int k \mathrm{d}t$					
		1	Integrat	tes $\frac{\pm \lambda}{\sqrt{(h-9)}}$	$\overline{0}$ to give $\pm \mu \sqrt{(h-9)}$; λ, μ^{-1} 0	M1	
Some evidence of applying both $t = 0$ and $h = 200$ to changed equation containing a constant of integration, e.g. c or A		$\frac{(h-9)^2}{\left(\frac{1}{2}\right)} = kt \left(+c\right)$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = k$	t or $\frac{(h-1)^{n}}{\binom{1}{2}}$	$\frac{9)^{\frac{1}{2}}}{} = (\text{their } k)t, \text{with/without } + c,$	A1	
$\begin{cases} t = 0, h = 200 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			or equ	uivalent, wh			
containing a constant of integration, e.g. c or A $ \begin{array}{cccccccccccccccccccccccccccccccccc$		(a 1 and b) a (and a	1.00			M	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\{t = 0, h = 200 \text{ P}\}\ 2\sqrt{(200-9)} =$				IVII)
$\{h = 50 \Rightarrow\}$ $2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ Applies $h = 50$ and their value of c to their changed equation and rearranges to find the value of $t =$ $t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minutes) (nearest minute) $t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148							+
$\{h = 50 \Rightarrow\}$ $2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ their changed equation and rearranges to find the value of $t =$ $t = 20\sqrt{191} - 20\sqrt{41}$ isw or $t = 148.3430145 = 148$ (minutes) (nearest minute) $t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148			•				
$t =$ to find the value of $t =$ $t = 20\sqrt{191} - 20\sqrt{41}$ isw or $t = 148.3430145 = 148$ (minutes) (nearest minute) $t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148		$\{h = 50 \Longrightarrow\} 2\sqrt{(50-9)} = -0.1t +$	2√ 191	-	-	dM1	J
or $t = 148.3430145 = 148$ (minutes) (nearest minute) A1 cso		t =		ane		divii	
or $t = 148.3430145 = 148$ (minutes) (nearest minute) or awrt 148		$t = 20\sqrt{191} - 20\sqrt{41}$	$t = 20\sqrt{191} - 20\sqrt{41}$ isw				
16		or $t = 148.3430145 = 148$ (minut	tes) (nearest minut	te)	•	Al	cso
							[6]

(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posit	les correctly. dh and dt should not be ions, although this mark can be implied Integral signs and limits not necessary.	В1
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$			
	$\left[\frac{1}{(h-v)^{\frac{1}{2}}} \right]^{50}$	Integrates $$	$\frac{\pm \lambda}{(h-9)}$ to give $\pm \mu \sqrt{(h-9)}$; λ, μ ¹ 0	M1
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{200}^{50} = \left[kt\right]_{0}^{T}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{or} \frac{(h-1)^{\frac{1}{2}}}{(h-1)^{\frac{1}{2}}} = kt$	$(1-9)^{\frac{1}{2}} = (\text{their } k)t, \text{ with/without limits,}$	Al
		or equivalen	t, which can be un-simplified or simplified.	
	2 TT 2 TS 1 1 1 1 TS	Atten	npts to apply limits of $h = 200, h = 50$	
	$2\sqrt{41} - 2\sqrt{191} = kt \text{ or } kT$	and (can be in	mplied) $t = 0$ to their changed equation	M1
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$	The	dependent on the previous M mark en rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$	_	$t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 148	4.1
	or $t = 148.3430145 = 148$ (minute	es) (nearest minute)	or 2 hours and awrt 28 minutes	A1 cso
				[6]
				8

		Question 7 Notes				
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent				
	Note	$\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} \text{ (+ c) with/without + c is B1M1A1}$				
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing				
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-0.1\mathrm{d}t$				
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in				
		part (b).				

Question Number	Scheme			Notes	Marks	
8.	$x = 3\theta \sin \theta$, $y = \sec^3 \theta$, $0 \le \theta < \frac{1}{2}$	4				
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \cos^3 \theta$	$s^3 \theta = \frac{1}{8} \Rightarrow$	$\cos\theta = \frac{1}{2}$	$\Rightarrow \theta = \frac{\pi}{3}$	Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3\theta \sin \theta$	M1
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$				$\frac{\sqrt{3}\pi}{2} \text{ or } \frac{3\pi}{2\sqrt{3}}$	A1
	Note: Obtaining two	value for	k without a	ccepting the	correct value is final A0	[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$				$3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later working	B1
	$\left\{ \int y \frac{dx}{d\theta} \left\{ d\theta \right\} \right\} = \int (\sec^3 \theta) (3\sin\theta + 3\theta\cos\theta) \left\{ d\theta \right\}$ Applies $\left(\pm K \sec^3 \theta \right) \left(\text{their } \frac{dx}{d\theta} \right)$ Ignore integral sign and $d\theta$; K^{-1} 0			MI		
	$= 3 \partial \theta \sec^2 \theta + \tan \theta \sec^2 \theta d\theta$	Achieves the correct result no errors in their working, e.g.			A1 *	
	$x=0$ and $x=k \Rightarrow \underline{\alpha}=\underline{0}$ and	$\beta = \frac{\pi}{3}$			or evidence of $0 \to 0$ and $k \to \frac{\pi}{3}$	В1
	Note: The wo	rk for the fi	inal B1 mar	k must be se	en in part (b) only.	[4]
		·		$\theta \sec^2 \theta$	$\rightarrow A\theta g(\theta) - B \int g(\theta), A > 0, B > 0,$	
(c)		(0) 1			is a trigonometric function in θ and ir $\dot{\theta} \sec^2 \theta d\theta$. [Note: $g(\theta)^{-1} \sec^2 \theta$]	M1
Way 1	$\left\{\dot{0}\theta\sec^2\theta\mathrm{d}\theta\right\} = \theta\tan\theta - \dot{0}\tan\theta$	$n heta\{d heta\}$	Eith		ependent on the previous M mark $\rightarrow A\theta \tan \theta - B \int \tan \theta$, $A > 0$, $B > 0$ or $\theta \sec^2 \theta \rightarrow \theta \tan \theta - \int \tan \theta$	dM1
8	$= \theta \tan \theta - \ln(\sec \theta)$		θ se	$c^2 \theta \rightarrow \theta \tan \theta$	$\theta - \ln(\sec \theta)$ or $\theta \tan \theta + \ln(\cos \theta)$ or	
	$\mathbf{or} = \theta \tan \theta +$	$ln(\cos\theta)$			$-\lambda \ln(\sec\theta)$ or $\lambda\theta \tan\theta + \lambda \ln(\cos\theta)$	Al
3	Note: Condone (2002 A			$\tan \theta + \ln(\cos x)$ for A1	THI
5	$\left\{ \grave{0} \tan \theta \sec^2 \theta d\theta \right\}$	sec 0 →			$\theta \sec^2 \theta \to \pm C \tan^2 \theta \text{ or } \pm C \sec^2 \theta$	Ml
	$= \frac{1}{2} \tan^2 \theta \text{ or } \frac{1}{2} \sec^2 \theta$	tan θ se	$c^2 \theta \rightarrow \frac{1}{2} ta$	$n^2\theta$ or $\frac{1}{2}$ sec	or $\pm Cu^{-2}$, where $u = \cos\theta$ $e^2\theta$ or $\frac{1}{2\cos^2\theta}$ or $\tan^2\theta - \frac{1}{2}\sec^2\theta$	
	or $\frac{1}{2u^2}$ where $u = \cos\theta$ or $\frac{1}{2}u^2$ where $u = \tan\theta$		or 0.5	u^{-2} , where u $\tan \theta \sec^2 \theta$	$u = \cos \theta$ or $0.5u^2$, where $u = \tan \theta$ $\Rightarrow \frac{\lambda}{2} \tan^2 \theta$ or $\frac{\lambda}{2} \sec^2 \theta$ or $\frac{\lambda}{2 \cos^2 \theta}$	Al
š	2	2 7			= $\cos \theta$ or $0.5 \lambda u^2$, where $u = \tan \theta$	
	${\operatorname{Area}(R)} = \begin{bmatrix} 3\theta \tan \theta - 3\ln(\sec \theta) + \frac{1}{2} \end{bmatrix}$	$\frac{3}{2}\tan^2\theta$	or $3\theta \tan \theta$	$\theta - 3\ln(\sec\theta) +$	$\frac{3}{2}\sec^2\theta\Big]_0^3$	
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{1}{3}\right)$	$\frac{3}{2}(3)$ $-(0)$	or $\left(3\left(\frac{\pi}{3}\right)\right)$	$\sqrt{3} - 3 \ln 2 + \frac{3}{2}$	$(4) \left) - \left(\frac{3}{2}\right)$	
8	$=\frac{9}{2}+\sqrt{3}\pi-3\ln 2$	or $\frac{9}{2} + \sqrt{3}$	$\pi + 3\ln\left(\frac{1}{2}\right)$	or $\frac{9}{2} + \sqrt{3}$	$\pi - \ln 8$ or $\ln \left(\frac{1}{8} e^{\frac{2}{3} \cdot \sqrt{3}\pi} \right)$	Al o.e.
					6	[6]
						12

Question Number		Scheme		Notes	Marks	
8. (c)	Way 2 fo	r the first 5 marks: Applying integ	gration b	by parts on $\partial (\theta + \tan \theta) \sec^2 \theta d\theta$		
Way 2	Ò(θsec² t	$\theta + \tan \theta \sec^2 \theta d\theta = \dot{0}(\theta + \tan \theta) \sec^2 \theta$	$\mathrm{ec}^2 \theta \mathrm{d} \theta$,	$\begin{cases} u = \theta + \tan \theta \Rightarrow \frac{du}{d\theta} = 1 + \sec^2 \theta \\ \frac{dv}{d\theta} = \sec^2 \theta \Rightarrow v = \tan \theta = g(\theta) \end{cases}$		
	$h(\theta)$ and	$g(\theta)$ are trigonometric functions in	θ) are trigonometric functions in θ and $g(\theta) = \text{their } \dot{0} \sec^2 \theta d\theta$. [Note: $g(\theta)^{-1} \sec^2 \theta$]			
			$A(\theta)$	$+\tan\theta$)g(θ) $-B_0^{\lambda}(1+h(\theta))$ g(θ), $A>0$, $B>0$	M1	
	$= (\theta + ta)$	$(1 + \sec^2 \theta) \tan \theta - \partial (1 + \sec^2 \theta) \tan \theta d\theta$	$A(\theta \cdot$	dependent on the previous M mark Either $\lambda \Big[(\theta + \tan \theta) \sec^2 \theta \Big] \rightarrow$ $+ \tan \theta \tan \theta - B \partial (1 + h(\theta)) \tan \theta$, $A^{-1}(0, B) > 0$	dM1	
				or $(\theta + \tan \theta) \tan \theta - (1 + h(\theta)) \tan \theta$		
	$= (\theta + ta)$	$+\tan\theta$ $\tan\theta - \partial(\tan\theta + \tan\theta \sec^2\theta) \{d\theta\}$				
	$= (\theta + ta)$	$\ln \theta $) $\tan \theta - \ln(\sec \theta) - \int_0^1 \tan \theta \sec^2 \theta$	$\{d\theta\}$	$(\theta + \tan \theta) \tan \theta - \ln(\sec \theta) \text{ o.e.}$ or $\lambda \Big[(\theta + \tan \theta) \tan \theta - \ln(\sec \theta) \Big] \text{ o.e.}$	A1	
		1 .		$\tan\theta \sec^2\theta \to \pm C\tan^2\theta \text{ or } \pm C\sec^2\theta$	Ml	
		$(\ln \theta) \tan \theta - \ln(\sec \theta) - \frac{1}{2} \tan^2 \theta$ $(\tan \theta) \tan \theta - \ln(\sec \theta) - \frac{1}{2} \sec^2 \theta \ \text{etc}$	o.	$(\theta + \tan \theta) \tan \theta - \frac{1}{2} \tan^2 \theta$ or $(\theta + \tan \theta) \tan \theta - \frac{1}{2} \sec^2 \theta$	A1	
	Note	Allow the first two marks in part (c) for θ	$\tan \theta - \partial \tan \theta$ embedded in their working		
	Note	Allow the first three marks in part	(c) for	$\theta \tan \theta - \ln(\sec \theta)$ embedded in their working		
	Note	Allow 3 rd M1 2 nd A1 marks for eithembedded in their working	her tan ²	$\theta - \frac{1}{2}\tan^2\theta$ or $\tan^2\theta - \frac{1}{2}\sec^2\theta$		
				on 8 Notes		
8. (a)	Note	Allow M1 for an answer of $k = \text{awrt } 2.72$ without reference to $\frac{\sqrt{3} \pi}{2}$ or $\frac{3\pi}{2\sqrt{3}}$				
	Note	Allow M1 for an answer of $k = 3(\arccos(\frac{1}{2}))\sin(\arccos(\frac{1}{2}))$ without reference to $\frac{\sqrt{3}\pi}{2}$ or $\frac{3\pi}{2\sqrt{3}}$			$\frac{3\pi}{2\sqrt{3}}$	
	Note	E.g. allow M1 for $\theta = 60$ °, leading	g to <i>k</i> =	$3(60)\sin(60)$ or $k = 90\sqrt{3}$		

8. (b)	Note	To gain A1, $d\theta$ does not need to appear until the	ey obtain $3\dot{0}(\theta \sec^2 \theta + \tan \theta \sec^2 \theta)d\theta$					
	Note	For M1, their $\frac{dx}{d\theta}$, where their $\frac{dx}{d\theta}$ ¹ $3\theta \sin \theta$, ne	eds to be a trigonometric function in θ					
	Note	Writing $\delta(\sec^3\theta)(3\sin\theta + 3\theta\cos\theta) = 3\delta(\theta\sec^3\theta)$	$^{2}\theta + \tan\theta \sec^{2}\theta$) d θ is sufficient for B1M1.	A1				
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing is sufficient for B1M1A1	Vriting $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing $\partial y \frac{dx}{d\theta} d\theta = 3\partial (\theta \sec^2\theta + \tan\theta \sec^2\theta) d\theta$ sufficient for B1M1A1					
	Note		The final A mark would be lost for $\partial \frac{1}{\cos^3 \theta} 3\sin\theta + 3\theta\cos\theta = 3\partial (\theta\sec^2\theta + \tan\theta\sec^2\theta)d\theta$ ack of brackets in this particular case].					
	Note		Give 2 nd B0 for $\alpha = 0$ and $\beta = 60$ °, without reference to $\beta = \frac{\pi}{3}$					
(c)	Note	A decimal answer of 7.861956551 (without a c	correct exact answer) is A0.					
	Note	First three marks are for integrating $\theta \sec^2 \theta$ with	h respect to θ					
	Note	Fourth and fifth marks are for integrating $\tan \theta$ so	$ec^2\theta$ with respect to θ					
	Note	Candidates are not penalised for writing $\ln \sec \theta$						
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta + \ln(\sec \theta)$ WITH NO INTER	RMEDIATE WORKING is M0M0A0					
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta - \ln(\cos \theta)$ WITH NO INTER						
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta - \ln(\sec \theta)$ WITH NO INTER	RMEDIATE WORKING is M1M1A1					
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta + \ln(\cos \theta)$ WITH NO INTER						
	Note	Writing a correct $uv - \partial v \frac{du}{dx}$ with $u = \theta, \frac{dv}{d\theta} =$ one error in the direct application of this formula	Writing a correct $uv - \partial v \frac{du}{dx}$ with $u = \theta$, $\frac{dv}{d\theta} = \tan \theta$, $\frac{du}{d\theta} = 1$ and $v = \text{their } g(\theta)$ and making one error in the direct application of this formula is 1^{st} M1 only					
8. (c)	Alternativ	we method for finding $\int \tan \theta \sec^2 \theta d\theta$	•					
	,	$\theta \implies \frac{\mathrm{d}u}{\mathrm{d}\theta} = \sec^2\theta$						
		$c^{2}\theta \Rightarrow v = \tan\theta$ $\theta \sec^{2}\theta d\theta = \tan^{2}\theta - \dot{\theta} \tan\theta \sec^{2}\theta d\theta$						
	ò tan	$\theta \sec^2 \theta d\theta = \tan^2 \theta - \partial \tan \theta \sec^2 \theta d\theta$						
	ò tan		$\tan\theta \sec^2\theta \text{ or } \to \pm C \tan^2\theta$	M1				
	ð tan Þ 2ð tan	$\theta \sec^2 \theta d\theta = \tan^2 \theta - \partial \tan \theta \sec^2 \theta d\theta$	$\tan\theta \sec^2\theta \text{ or } \to \pm C \tan^2\theta$ $\tan\theta \sec^2\theta \to \frac{1}{2}\tan^2\theta$	M1 A1				
	$0 an \theta$ tan θ second θ and θ second θ and θ second θ and θ are θ and θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ are θ are θ and θ are θ are θ are θ and θ are θ are θ and θ are θ are θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ and θ are θ and θ are θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ are θ an	$\theta \sec^2 \theta d\theta = \tan^2 \theta - \partial \tan \theta \sec^2 \theta d\theta$ $\theta \sec^2 \theta d\theta = \tan^2 \theta$						
	$ \begin{array}{c} $	$\frac{1}{\theta}\sec^2\theta d\theta = \tan^2\theta - \frac{1}{0}\tan\theta\sec^2\theta d\theta$ $\frac{1}{\theta}\sec^2\theta d\theta = \tan^2\theta$ $\frac{1}{\theta}\sec^2\theta d\theta = \frac{1}{2}\tan^2\theta$ $\frac{1}{\theta}\sec\theta \implies \frac{du}{d\theta} = \sec\theta\tan\theta$						
		$\frac{1}{\theta}\sec^{2}\theta d\theta = \tan^{2}\theta - \frac{1}{0}\tan\theta\sec^{2}\theta d\theta$ $\frac{1}{\theta}\sec^{2}\theta d\theta = \tan^{2}\theta$ $\frac{1}{\theta}\sec^{2}\theta d\theta = \frac{1}{2}\tan^{2}\theta$ $\frac{1}{\theta}\sec\theta \Rightarrow \frac{du}{d\theta} = \sec\theta\tan\theta$ $\frac{1}{\theta}\sec\theta \Rightarrow \cos\theta = \sec\theta\tan\theta$						
		$\frac{1}{\theta}\sec^{2}\theta d\theta = \tan^{2}\theta - \frac{1}{0}\tan\theta\sec^{2}\theta d\theta$ $\frac{1}{\theta}\sec^{2}\theta d\theta = \tan^{2}\theta$ $\frac{1}{\theta}\sec^{2}\theta d\theta = \frac{1}{2}\tan^{2}\theta$ $\frac{1}{\theta}\sec\theta \implies \frac{du}{d\theta} = \sec\theta\tan\theta$ $\frac{1}{\theta}\sec\theta \implies \cos\theta = \sec\theta\tan\theta$ $\frac{1}{\theta}\sec\theta \implies \cos\theta = \sec\theta\tan\theta$ $\frac{1}{\theta}\sec\theta \implies \cos\theta = \sec\theta\tan\theta$						

Question 8 Notes Continued

20

Question Number	Scheme					Marks
2.	x 1 1.2 1.4 y 0 0.2625 0.659485	1.6 1.2032	1.8 1.9044	2.7726	$y = x^2 \ln x$	
(a)	${At x = 1.4,} y = 0.6595 (4 dp)$				0.6595	B1 cao
					•	[1]
					Outside brackets	
(b)	$\frac{1}{2}$ × (0.2) × $\left[0 + 2.7726 + 2\left(0.2625 + \text{the}\right)\right]$	eir 0.6595 +	1.2032 + 1	.9044)]	$\frac{1}{2}$ ×(0.2) or $\frac{1}{10}$	B1 o.e.
(=)	{Note: The "0" does not have to be included.	ıded in []}		For structure of []	M1
	$\left\{ = \frac{1}{10}(10.8318) \right\} = 1.08318 = 1.083 (3.6)$	dp)		anything t	that rounds to 1.083	A1
						[3]
(c) Way 1	$\left\{ \mathbf{I} = \int x^2 \ln x \mathrm{d}x \right\}, \begin{cases} u = \ln x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \\ \frac{\mathrm{d}v}{\mathrm{d}x} = x^2 \implies v = \end{cases}$	$\left\{\begin{array}{c} \frac{1}{x} \\ \frac{1}{3}x^3 \end{array}\right\}$				
	$= \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \left(\frac{1}{x} \right) \{ dx \}$			_	$x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\}$ $\{dx\}$, where $\lambda, \mu > 0$	M1
	3 2 3 (1)		x^2	-	$\int \frac{x^3}{3} \left(\frac{1}{x} \right) \{ dx \},$ ied or un-simplified	A1
	$=\frac{x^3}{3}\ln x - \frac{x^3}{9}$		$\frac{x^3}{3}$ ln $x -$	$\frac{x^3}{9}$, simplifi	ied or un-simplified	A1
	Area $(R) = \left\{ \left[\frac{x^3}{3} \ln x - \frac{x^3}{9} \right]_1^2 \right\} = \left(\frac{8}{3} \ln 2 - \frac{8}{9} \right) - \left(0 - \frac{1}{9} \right)$ dependent on the previous M mark. Applies limits of 2 and 1 and subtracts the correct way round			dM1		
	$= \frac{8}{3} \ln 2 - \frac{7}{9}$			$\frac{8}{3}\ln 2 - \frac{7}{9}$	or $\frac{1}{9}(24\ln 2 - 7)$	Al oe cso
			'			[5]

	1		-		
(c) Way 2	$I = x^{2}(x \ln x - x) - \int 2x(x \ln x - x) dx$	$\begin{cases} u = x^2 & \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2x \\ \frac{\mathrm{d}v}{\mathrm{d}x} = \ln x & \Rightarrow v = x \ln x - x \end{cases}$			
	So, $3I = x^2(x \ln x - x) + \int 2x^2 \{dx\}$				
		A full method of applying $u = x^2$, $v' = \ln x$ to give			
	and $I = \frac{1}{3}x^2(x \ln x - x) + \frac{1}{3}\int 2x^2 \{dx\}$	$\pm \lambda x^2 (x \ln x - x) \pm \mu \int x^2 \{ dx \}$	M1		
	3, (3, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1	$\frac{1}{3}x^{2}(x\ln x - x) + \frac{1}{3}\int 2x^{2} \left\{ dx \right\}$ simplified or un-simplified	A1		
	$= \frac{1}{3}x^2(x\ln x - x) + \frac{2}{9}x^3$	$\frac{x^3}{3} \ln x - \frac{x^3}{9}$, simplified or un-simplified	A1		
		Then award dM1A1 in the same way as above	M1 A1		
			[5]		
			9		
	Question 2 Notes				

		Question 2 Notes				
2. (a)	B1	0.6595 correct answer only. Look for this on the table or in the candidate's working.				
(b)	B1	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.				
	M1	For structure of trapezium rule []				
	Note	No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y ordinate].				
	A1	anything that rounds to 1.083				
	Note	Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.070614704)				
	Note	Full marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594				
	Note	ote Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = \text{awrt } 1.083$				
	Brack	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly				
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) + 2.7726$ (answer of 10.9318)				
	Award B1M0A0 for $\frac{1}{2}(0.2)(2.7726) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044)$ (answer of 8.33646)					
	Alternative method: Adding individual trapezia					
	Area $\approx 0.2 \times \left[\frac{0 + 0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2} \right] = 1.08318$					
	B1	0.2 and a divisor of 2 on all terms inside brackets				
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2				
	A1	anything that rounds to 1.083				

(c)	A1	Exact answer needs to be a two term expression in the form $a \ln b + c$
	Note	Give A1 e.g. $\frac{8}{3}\ln 2 - \frac{7}{9}$ or $\frac{1}{9}(24\ln 2 - 7)$ or $\frac{4}{3}\ln 4 - \frac{7}{9}$ or $\frac{1}{3}\ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3}\ln 2$
		or $\ln 2^{\frac{8}{3}} - \frac{7}{9}$ or equivalent.
	Note	Give final A0 for a final answer of $\frac{8 \ln 2 - \ln 1}{3} - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{1}{3} \ln 1 - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{8}{9} + \frac{1}{9}$
		or $\frac{8}{3}\ln 2 - \frac{7}{9} + c$
	Note	$\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$
	sc	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"
		formula but makes only one error when applying it can be awarded Special Case 1st M1.

Question Number	Scheme	Notes	Marks
4.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$		
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
	$\ln x = -\frac{5}{2}t + c$	Integrates both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$ or $\pm k \rightarrow \pm kt$ (with respect to t); $k, \alpha \neq 0$	M1
	2	$\ln x = -\frac{5}{2}t + c, \text{ including "} + c"$	A1
	$\{t = 0, x = 60 \Longrightarrow_{j=1}^{3} \ln 60 = c$ $\ln x = -\frac{5}{2}t + \ln 60 \Longrightarrow \underline{x} = 60e^{-\frac{5}{2}t}$ or	Finds their c and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}}$ or $x = \frac{60}{e^{\frac{1}{2}}}$ with no incorrect working seen	Al cso
			[4

$\mathbf{Way 2}$ $\frac{\mathrm{d}t}{\mathrm{d}x}$	$= -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$		B1		
	$t = -\frac{2}{5}\ln x + c$		Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$ Integrates both sides to give either $t =$ or $\pm \alpha \ln px$; $\alpha \neq 0$, $p > 0$	M1	
	$t = -\frac{1}{5} \ln x + c$		$t = -\frac{2}{5} \ln x + c$, including "+c"	A1	
$\{t =$	$0, x = 60 \Rightarrow$ $c = \frac{2}{5} \ln 60 \Rightarrow t = -\frac{2}{5}$	$-\ln x + \frac{2}{5}\ln x$	Finds their c and uses correct algebra		
	5 -5,	60	to achieve $x = 60e^{-\frac{2}{2}t}$ or $x = \frac{60}{\frac{4}{2}t}$		
⇒	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow x = 60e^{-\frac{2}{2}t}$	$x = \frac{e^{\frac{5}{2}t}}{e^{\frac{5}{2}t}}$	A1 cso		
$\begin{array}{c} \text{(a)} \\ \text{Way 3} \end{array} \int_{60.2}^{x} \frac{1}{3} dx$	$\frac{1}{x} dx = \int_0^t -\frac{5}{2} dt$		B1		
		Integra	M1		
[t			or $\pm k \to \pm kt$ (with respect to t); $k, \alpha \neq 0$ $\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t} \text{ including the correct limits}$ $= \frac{60}{e^{\frac{5}{2}t}} \qquad \text{Correct algebra leading to a correct result}$		
Linx	$\begin{bmatrix} x \end{bmatrix}_{60}^x = \left[-\frac{5}{2}t \right]_0$				
$\ln x$	$-\ln 60 = -\frac{5}{2}t \implies \underline{x} = 60e^{-\frac{5}{2}t} \text{ or } x$	$=\frac{60}{e^{\frac{4}{2}t}}$			
				[4]	
		Sı	obstitutes $x = 20$ into an equation in the form		
(b) 20 =	$20 = 60e^{-\frac{5}{2}t}$ or $\ln 20 = -\frac{5}{2}t + \ln 60$		of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$		
(=)			or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$;		
			$\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0		
	$t = -\frac{2}{5} \ln \left(\frac{20}{60} \right)$		dependent on the previous M mark		
	5 (00)	ses correc	0.41		
	{= 0.4394449 (days)}	either $t =$	dM1		
Note	e: t must be greater than 0	$= A(\ln 20)$			
	= 632.8006 = 633 (to the nearest	minute)	awrt 633 or 10 hours and awrt 33 minutes	A1 cso	
	Note: dM1 can be implied	by $t = awi$	t 0.44 from no incorrect working.		
			_		

Question		Scheme		Marks			
Number 4.		$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$					
4.	_	•		Separates variables as shown. dx and dt should not			
(a) Way 4	$\int \frac{2}{5}$	$\frac{\partial}{\partial x} dx = -\int dt$	be in the	be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.			
		$\frac{2}{5}\ln(5x) = -t + c$	Integra	ates both sides to give either $\pm \alpha \ln(px)$ to kt (with respect to t); $k, \alpha \neq 0$; $p > 0$	M1		
		$\frac{1}{5}$ m(3x) = -1 + 0		$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c$ "	A1		
	${t=0}$	$0, x = 60 \Longrightarrow \left\{ \begin{array}{c} \frac{2}{5} \ln 300 = c \end{array} \right.$					
	$\frac{2}{5}\ln(5$	$\dot{x}(x) = -t + \frac{2}{5} \ln 300 \implies \underline{x = 60}e^{-\frac{5}{2}}$	or	Finds their c and uses correct algebra or to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{2^{\frac{5}{2}t}}$			
	$x = \frac{60}{e^{\frac{4}{2}}}$			A1 cso			
	e²	e					
(a)	$\left\{ \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \Rightarrow \right\} t = \int_{60}^{x} -\frac{2}{5x} \mathrm{d}x$			Ignore limits	[4] B1		
Way 5	\ dx	$\mathbf{J}_{60} \mathbf{J}_{x}$	Integr	ates both sides to give either $\pm k \rightarrow \pm kt$			
		$t = \left[-\frac{2}{5} \ln x \right]_{co}^{x}$	(with res	M1			
		[5] ₆₀	t =	A1			
	$t=-\frac{2}{5}$	$\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x - \ln x$	160				
	⇒ <u>x</u> =	$60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$		A1 cso			
		Operation 4 Notes					
			Question				
4. (a)	B1	For the correct separation of vari	iables. E.g.	$\frac{1}{5x} \mathrm{d}x = \int -\frac{1}{2} \mathrm{d}t$			
	Note B1 can be implied by seeing either $\ln x = -\frac{5}{2}t + c$ or $t = -\frac{2}{5}\ln x + c$ with or without $+c$ Note B1 can also be implied by seeing $\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$ Note Allow A1 for $x = 60\sqrt{e^{-5t}}$ or $x = \frac{60}{\sqrt{e^{5t}}}$ with no incorrect working seen						
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$					
	Note			final answer (without seeing $x = 60e^{-\frac{5}{2}}$)			
Note Way 1 to Way 5 do not exhaust all the different methods that candidates can give.							
		G_{i}^{*} G_{i					
	Note	Give BololoA0A0 for writing do	wit $x = 60e^{-x}$	of $\chi \equiv \frac{1}{2^{\frac{5}{4}}}$ with no evidence of working c	i integration		

(b)	A1	You can apply cso for the work only seen in part (b).	
	Note	Give dM1(Implied) A1 for $\frac{5}{2}t = \ln 3$ followed by $t = \text{awrt } 633$ from no incorrect working.	
	Note	Substitutes $x = 40$ into their equation from part (a) is M0dM0A0	

Question Number	Scheme			N	lotes	Marks
6.	(i) $\int \frac{3y-4}{y(3y+2)} dy$, $y > 0$, (ii) $\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} dx$, $x = 4\sin^2 \theta$					
(i)	$3y-4$ A B $\rightarrow 2$ A $A(2)$	2) . P			See notes	M1
Way 1	$\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y-4 = A(3y+2) + By$ $y=0 \Rightarrow -4 = 2A \Rightarrow A=-2$		At least one of their $A = -2$ or their $B = 9$		A1	
	$y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$			Both their $A = -2$ and their $B = 9$		A1
		I	ntegrates to give	e at least	one of either	
	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{-2}{y} + \frac{9}{(3y+2)} dy$		$\frac{4}{y} \rightarrow \pm \lambda \ln y$ or $\frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$			M1
			$A\neq 0\;, B\neq 0$			
'	• (0) (1)	At leas	At least one term correctly followed through from their A or from their B			A1 ft
	$= -2\ln y + 3\ln(3y+2) \left\{ + c \right\}$	$= -2\ln y + 3\ln(3y + 2) \left\{ + c \right\} -2\ln y + 3\ln(3y + 2)$		$\ln(3y+2)$ or $-2\ln y + 3\ln(y+\frac{2}{3})$		
			with correct bracketing, nplified or un-simplified. Can apply isw.			Al cao
1					штирргу тэтт	[6]
(ii) (a) Way 1	$\left\{x = 4\sin^2\theta \Rightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta \text{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin2\theta \text{or} \mathrm{d}x = 8\sin\theta\cos\theta\mathrm{d}\theta$			B1		
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\} \text{or} \int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 4\sin2\theta \left\{ d\theta \right\}$					M1
	$= \int \underline{\tan \theta} \cdot 8 \sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4 \sin 2\theta$	$\{d\theta\}$	$\left(\frac{x}{4-x}\right) \to \pm I$	$K \tan \theta$ or	$\pm K \left(\frac{\sin \theta}{\cos \theta} \right)$	<u>M1</u>
	$= \int 8\sin^2\theta d\theta$		∫8sir	$n^2 \theta d\theta$	including $d\theta$	A1
	3 . 3 3	π	Writes down a correct equation		rect equation	
	$3 = 4\sin^2\theta$ or $\frac{3}{4} = \sin^2\theta$ or $\sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{3}$		involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and			B1
	$\left\{ x = 0 \to \theta = 0 \right\}$	n	o incorrect work	k seen reg	garding limits	
						[5]

(ii) (b)	$= \left\{ 8 \right\} \int \left(\frac{1 - \cos 2\theta}{2} \right) d\theta \left\{ = \int \left(4 - 4 \right) d\theta \right\}$	$\left\{ = \int (4 - 4\cos 2\theta) d\theta \right\}$		Applies $\cos 2\theta = 1 - 2\sin^2 \theta$ to their integral. (See notes)		
	(1 1)		For $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha, \beta \neq 0$		M1	
	$= \left\{ 8 \right\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right) \left\{ = 4\theta - 2\sin \theta \right\}$	$\ln 2\theta$	sin	$^{2}\theta \rightarrow \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right)$	A1	
	$\left\{ \int_{0}^{\frac{\pi}{3}} 8\sin^{2}\theta d\theta = 8 \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} \right\} = 8 \left[\left(\frac{\pi}{6} - \frac{1}{4} \left(\frac{\sqrt{3}}{2} \right) \right) - \left(0 + 0 \right) \right]$					
	$=\frac{4}{3}\pi-\sqrt{3}$	two term" exact as	nswer of e.g. $\frac{4}{3}\pi$	$-\sqrt{3}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$	A1 o.e.	
					[4]	
					15	

Note Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$	Question 6 Notes						
Note M1A1 can be implied <i>for writing down</i> either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$ or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working. Note Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A Note Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$ Notebut allow 2^{nd} M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$	t one						
or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working. Note Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A Note Give $2^{\text{nd}} \text{ M0 for } \frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$ Notebut allow $2^{\text{nd}} \text{ M1 for either } \frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$							
Note Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A Note Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$ Notebut allow 2^{nd} M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$							
Note Give $2^{\text{nd}} \text{ M0 for } \frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$ Notebut allow $2^{\text{nd}} \text{ M1 for either } \frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$							
Notebut allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)						
Notebut allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$	Note Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$						
6. (ii)(a) 1st M1 Substitutes $x = 4\sin^2\theta$ and their dx (from their correctly rearranged $\frac{dx}{dx}$) into $\sqrt{\left(\frac{x}{dx}\right)^2} dx$	M(3y+1)						
$d\theta$ $\sqrt{4-x}$							
Note $dx \neq \lambda d\theta$. For example $dx \neq d\theta$	·						
Note Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta$	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$						
2 nd M1 Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K \tan\theta$ or $\pm K \left(\frac{\sin\theta}{\cos\theta}\right)$	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K \tan\theta$ or $\pm K \left(\frac{\sin\theta}{\cos\theta}\right)$						
Note Integral sign is not needed for this mark.							
1 st A1 Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$							
2 nd B1 Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work s	een						
regarding limits							
Note Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$							
Note Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3$, $\theta = \frac{\pi}{3}$; $x = 0$, $\theta = 0$							

(ii)(b)	M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$				
		E.g.: $\cos 2\theta = 1 - 2\sin^2\theta$ or $\sin^2\theta = \frac{1 - \cos 2\theta}{2}$ or $K\sin^2\theta = K\left(\frac{1 - \cos 2\theta}{2}\right)$				
		and applies it to their integral. Note: Allow M1 for a correctly stated formula				
		(via an incorrect rearrangement) being applied to their integral.				
	М1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0, \beta \neq 0$				
		(can be simplified or un-simplified).				
	1st A1	Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only.				
		Can be implied by $k \sin^2 \theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.				
	2nd A1	A correct solution in part (ii) leading to a "two term" exact answer of				
		e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$				
	Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.				
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the 1 st three marks (i.e. M1M1A1) in part (b).				
	Note	If they incorrectly obtain $\int_0^{\frac{\pi}{3}} 8\sin^2\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$)				
		then the final A1 is available for a correct solution in part (ii)(b).				

	Scheme		Notes	Marks
6. (i) Way 2	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6}{y(3y+2)} \mathrm{d}y$			
	$\frac{3y+6}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y+6 = A(3)$	y + 2) + By	See notes	M1
	$y = 0 \implies 6 = 2A \implies A = 3$		At least one of their $A = 3$ or their $B = -6$	A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 3$ and their $B = -6$	A1
	$\int \frac{3y - 4}{y(3y + 2)} dy$ $= \int \frac{6y + 2}{3y^2 + 2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y + 2)} dy$	or $\frac{A}{y} \rightarrow$	Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	$\int 3y^2 + 2y$ $\int y$ $\int (3y + 2)$	At lea	ast one term correctly followed through	A1 ft
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \left\{+c\right\}$		$ln(3y^2+2y) - 3ln y + 2ln(3y + 2)$ with correct bracketing, simplified or un-simplified	Al cao
				[6]

	1			
6. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$			
	$\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$		See notes	M1
			At least one of their $A = \frac{5}{7}$	
	$y = 0 \implies 5 = 2A \implies A = \frac{5}{2}$		or their $B = -\frac{15}{2}$	A1
	$y = -\frac{2}{3} \implies 5 = -\frac{2}{3}B \implies B = -\frac{15}{2}$		Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1
			Integrates to give at least one of either	
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	or $\frac{A}{}$	$\frac{M(3y+1)}{3y^2+2y} \to \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \to \pm \mu \ln(3y+2)$	M1
	[3 ₁₁ + 1	y	$(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	
	$= \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{2} dy + \int \frac{15}{2} (3y+2) dy$	At le	$M \neq 0, A \neq 0, B \neq 0$ ast one term correctly followed through	A1 ft
				ATI
	$= \frac{1}{2}\ln(3y^2 + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2) \left\{+c\right\}$		$\frac{1}{2}\ln(3y^2 + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2)$	A1 cao
			with correct bracketing, simplified or un-simplified	
			simplified of un-simplified	[6]
	Col.		N	191
	Scheme		Notes	
6. (i) Way 4	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$	+ 2) dy		
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+1)} \mathrm{d}y$	$\frac{1}{2}$ dy		
	$\frac{4}{v(3v+2)} \equiv \frac{A}{v} + \frac{B}{(3v+2)} \Rightarrow 4 = A(3v+2) +$	- By	See notes	M1
	y(3y + 2) y $(3y + 2)$		At least one of	A1
	$y = 0 \implies 4 = 2A \implies A = 2$		their $A = 2$ or their $B = -6$	Ai
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 2$ and their $B = -6$	A1
			Integrates to give at least one of either	
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	$\frac{C}{(3n+2)}$	$\rightarrow \pm \alpha \ln(3y+2)$ or $\frac{A}{y} \rightarrow \pm \lambda \ln y$ or	
	$\mathbf{J} y(3y+2)$	(3y + 2)		M1
			$\frac{B}{(3y+2)} \to \pm \mu \ln(3y+2),$	
	$= \int \frac{3}{3y+2} dy - \int \frac{2}{y} dy + \int \frac{6}{(3y+2)} dy$		$A \neq 0, B \neq 0, C \neq 0$	
	$\int 3y + 2^{-y} \int y^{-y} \int (3y + 2)^{-y}$	At les	ast one term correctly followed through	A1 ft
		711 101	$\ln(3y+2) - 2\ln y + 2\ln(3y+2)$	
		I	(0))	1
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \left\{ + c \right\}$		with correct bracketing	A1 cao
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \left\{ + c \right\}$		with correct bracketing, simplified or un-simplified	A1 cao
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \left\{ + c \right\}$			Al cao

	Alternative methods for B1M1M1A1 in (ii)(a)				
(ii)(a) Way 2	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta$			As in Way 1	B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\}$			As before	M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ d\theta \right\}$				
	$= \int \frac{\sin \theta}{\sqrt{(1-\sin^2 \theta)}} \cdot 8\sqrt{(1-\sin^2 \theta)} \sin \theta \left\{ d\theta \right\}$				
	$= \int \sin \theta . 8 \sin \theta \left\{ \mathrm{d}\theta \right\}$		$\frac{\text{Correct me}}{\sqrt{(1-\sin^2\theta)}} \text{ being}$	thod leading to g cancelled out	M1
	$= \int 8\sin^2\theta d\theta$		$\int 8\sin^2\theta \mathrm{d}\theta$	including $d\theta$	Al cso
(ii)(a) Way 3	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta$			As in Way 1	B1
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta$, $4 - x = 2 + 2\cos 2\theta$				
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$				M1
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ d\theta \right\} = \int \frac{2 - 2\cos 2\theta}{\sqrt{4 - 4\cos^2 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$				
	$= \int \frac{2 - 2\cos 2\theta}{2\sin 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} = \int 2(2 - 2\cos 2\theta) \cdot \left\{ d\theta \right\}$ Correct method leading to $\sin 2\theta$ being cancelled out			M1	
	$= \int 8\sin^2\theta d\theta$		$\int 8\sin^2\theta d\theta$	including $d\theta$	A1 cso

Question Number	Scheme		Notes	Mar	ks
7.	$y = (2x-1)^{\frac{3}{4}}, x \geqslant \frac{1}{2}$ passes though $P(k,8)$				
(a)	$\left\{ \int (2x-1)^{\frac{3}{2}} dx \right\} = \frac{1}{5} (2x-1)^{\frac{5}{2}} \left\{ + c \right\}$		$(2x \pm 1)^{\frac{3}{2}} \rightarrow \pm \lambda (2x \pm 1)^{\frac{5}{2}} \text{ or } \pm \lambda u^{\frac{5}{2}}$ where $u = 2x \pm 1$; $\lambda \neq 0$	M1	
	(J	$\frac{1}{5}(2x-1)^{\frac{5}{2}}$	with or without $+ c$. Must be simplified.	A1	
					[2]
(b)	${P(k,8) \Rightarrow} 8 = (2k-1)^{\frac{3}{4}} \Rightarrow k = \frac{8^{\frac{4}{3}} + 1}{2}$	rearrang	tets $8 = (2k - 1)^{\frac{3}{4}}$ or $8 = (2x - 1)^{\frac{3}{4}}$ and es to give $k = (\text{or } x =)$ a numerical value.	M1	
	So, $k = \frac{17}{2}$		$k \text{ (or } x) = \frac{17}{2} \text{ or } 8.5$	A1	
					[2]

(c)	$\pi \int (2x -$	$\left(1\right)^{\frac{3}{4}}\right)^2 dx$		J ($(2x-1)^{\frac{3}{4}}$ or $(2x-1)^{\frac{3}{4}}$ or $(2x-1)^{\frac{3}{4}}$	•	B1
		$\Rightarrow = \left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - (0) \right)$ not necessary to write the "-0"	$\left\{=\frac{1024}{5}\right\}$	to part (b)) the fo	limits of "8.5" (and 0.5 to an e orm $\pm \beta(2x-1)$ racts the correct	xpression of $\frac{5}{2}$; $\beta \neq 0$ and	M1
		$=\pi(8)^2\left(\frac{17}{2}\right)\left\{=544\pi\right\}$			$(3)^2$ (their answer) $(3)^2$ (their answer) $(3)^2$ (their answer) $(3)^2$ (their answer)	,	B1 ft
	$\left\{ \operatorname{Vol}(S) = \right.$	$544\pi - \frac{1024\pi}{5} $ \Rightarrow $\operatorname{Vol}(S) = \frac{16}{5}$	96 5 π		$\frac{1696}{5}\pi, \frac{3392}{10}\pi$		A1
Alt. (c)	$Vol(S) = \pi$	$(8)^2 \left(\frac{1}{2}\right) + \underline{\underline{\pi}} \int_{0.5}^{8.5} \left(8^2 - \underline{(2x-1)^{\frac{3}{2}}}\right)^{\frac{3}{2}}$	dx			$(2x-1)^{\frac{3}{2}}$ mits and dx.	[4] B1
	= π	$= \pi (8)^2 \left(\frac{1}{2}\right) + \pi \left[64x - \frac{1}{5}(2x - 1)^{\frac{5}{2}}\right]_{0.5}^{8.5}$					
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \left(\left(\underline{\frac{64("8.5")}{5}} - \frac{1}{5}(2(8.5) - 1)^{\frac{5}{2}}\right) - \left(\underline{\frac{64(0.5)}{5}} - \frac{1}{5}(2(0.5) - 1)^{\frac{5}{2}}\right)\right) $ as above				M1 <u>B1</u>		
	{= 3	$2\pi + \pi \left(\left(544 - \frac{1024}{5} \right) - \left(32 - 0 \right) \right)$	$\bigg\} \Rightarrow \operatorname{Vol}(S)$	$S(S) = \frac{1696}{5}\pi$			Al
							[4] 8
	•		Question 7	Notes			
7. (b)	SC	Allow Special Case SC M1 for rearranges to give $k = (\text{or } x =)$ a	a candidate v	who sets 8 = ($(2k-1)^{\frac{3}{2}}$ or 8:	$=(2x-1)^{\frac{3}{2}}$	and
7. (c)	M1	Can also be given for applying t			(b)") - 1) and 0	to an express	sion of the
	form $\pm \beta u^{\frac{5}{2}}$; $\beta \neq 0$ and subtracts the correct way round.						
	Note You can give M1 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{\frac{1}{2}}^{\frac{17}{2}} = \frac{1024}{5}$						
	Note	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{0}^{\frac{17}{2}} = \left(\frac{1}{5} \right)_{0}^{\frac{17}{2}}$		/			
	B1ft	Correct expression for the volum					
	Note	If a candidate uses integration to to give a correct expression for		lume of this c	ylinder they nee	ed to apply the	eir limits
		to give a correct expression for	no volume.				

So $\pi \int_0^{8.5} 8^2 dx = \pi \left[64x \right]_0^{8.5}$ is **not sufficient** for B1 but $\pi(64(8.5) - 0)$ is sufficient for B1.

7.	MISREADING IN BOTH PARTS (B) AND (C)				
	Apply the misread rule (MR) for candidates	who apply	$y = (2x - 1)^{\frac{3}{2}}$ to both parts (b) and (c)		
(b)	${P(k,8) \Rightarrow} 8 = (2k-1)^{\frac{3}{2}} \Rightarrow k = \frac{8^{\frac{2}{3}}+1}{2}$	rearrar	Sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$ and ages to give $k = (\text{or } x =)$ a numerical value.	M1	
	So, $k = \frac{5}{2}$		$k \text{ (or } x) = \frac{5}{2} \text{ or } 2.5$	A1	
					[2]
(c)	$\pi \int \left(\left(2x - 1 \right)^{\frac{3}{2}} \right)^2 \mathrm{d}x$		For $\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2$ or $\pi \int (2x-1)^3$	В1	
			Ignore limits and dx. Can be implied.		
	$\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 dx \right\} = \left[\frac{(2x-1)^4}{8} \right]_{\frac{1}{2}}^{\frac{5}{2}} = \left(\left(\frac{4^4}{8} \right) - (0) \right) \left\{ = \frac{1}{8} \right\}_{\frac{1}{2}}^{\frac{17}{2}} = \left(\frac{4^4}{8} - \frac{4^4}{8} \right) - \left(\frac{4^4}{8} - \frac{4^4}{8} \right) = \frac{1}{8} \left(\frac{4^4}{8} - \frac{4^4}{8} -$		Applies x-limits of "2.5" (their answer to part (b)) and 0.5 to an expression of the form $\pm \beta (2x-1)^4$; $\beta \neq 0$ and subtracts	M1	
			the correct way round		
	$V_{\text{cylinder}} = \pi(8)^2 \left(\frac{5}{2}\right) \left\{=160\pi\right\}$		$\pi(8)^2$ (their answer to part (b))	B1 ft	
	(2)		Sight of 160π implies this mark		
	$\left\{ \operatorname{Vol}(S) = 160\pi - 32\pi \right\} \Rightarrow \operatorname{Vol}(S) = 128\pi$		An exact correct answer in the form $k\pi$ E.g. 128π	A1	
					[4]
	Note Mark parts (b) and (c) using the mark scheme above and then working forwards from part (b) deduct two from any A or B marks gained. E.g. (b) M1A1 (c) B1M1B1A1 would score (b) M1A0 (c) B0M1B1A1 E.g. (b) M1A1 (c) B1M1B0A0 would score (b) M1A0 (c) B0M1B0A0				
	Note If a candidate uses $y = (2x - 1)^{\frac{3}{4}}$ in part (b) and then uses $y = (2x - 1)^{\frac{3}{2}}$ in part (c) do not apply a misread in part (c).				

June 2015 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	N	larks
3.	$y = 4x - x e^{\frac{1}{2}x}, \ x \geqslant 0$		
(a)	$y = 4x - x e^{\frac{1}{2}x}, \ x \geqslant 0$ $\left\{ y = 0 \implies 4x - x e^{\frac{1}{2}x} = 0 \implies x(4 - e^{\frac{1}{2}x}) = 0 \implies \right\}$		
	Attempts to solve $e^{\frac{1}{2}x} = 4$ g $e^{\frac{1}{2}x} = 4 \Rightarrow x_A = 4\ln 2$ in terms of $\pm \lambda \ln \mu$		
	4ln2 cao (Ig	gnore $x = 0$) A1	[2]
(b)	$\left\{ \int x e^{\frac{1}{2}x} dx \right\} = 2x e^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \left\{ dx \right\} $ $\frac{\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \left\{ dx \right\},}{\frac{1}{2}x + \frac{1}{2}x + \frac{1}{2}$	$\alpha > 0, \beta > 0$ M1	
(b)		or without dx A1	on ePEN)
	$= 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \left\{ + c \right\} \qquad 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \text{ o.e. with or}$	without $+c$ A1	
			[3]

(c)	$\left\{\int 4x\mathrm{d}x\right\}$	$\begin{cases} x = 2x^2 \\ 4x \rightarrow 2x^2 \text{ or } \frac{4x^2}{2} \text{ o.e.} \end{cases}$	B1		
	$\left\{ \int_0^{4\ln 2} (4x - x e^{\frac{1}{2}x}) dx \right\} = \left[2x^2 - \left(2x e^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \right) \right]_0^{4\ln 2 \text{ or ln16 or their limits}}$				
	= (2(41	$(\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)} - \left(2(0)^2 - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}\right)$ See notes	M1		
	= (32(lr	$(12)^2 - 32(\ln 2) + 16 - (4)$			
	= 32(ln	$(2)^2 - 32(\ln 2) + 12$ $(32(\ln 2)^2 - 32(\ln 2) + 12$, see notes	A1		
			[3] 8		
		Question 3 Notes			
3. (a)	M1	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$			
	A1	$4 \ln 2$ cao stated in part (a) only (Ignore $x = 0$)			
(b)	NOT E	Part (b) appears as M1M1A1 on ePEN, but is now marked as M1A1A1.			
	M1	Integration by parts is applied in the form $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{dx\}$, where $\alpha > 0$, $\beta > 0$.			
	(must be in this form) with or without dx				
	A1 $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with or without dx . Can be un-simplified.				
	A1 $2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or without + c. Can be un-simplified.				
	Note You can also allow $2e^{\frac{1}{2}x}(x-2)$ or $e^{\frac{1}{2}x}(2x-4)$ for the final A1.				
	isw	You can ignore subsequent working following on from a correct solution.			
	SC	SPECIAL CASE: A candidate who uses $u = x$, $\frac{dv}{dx} = e^{\frac{1}{2}x}$, writes down the correct "b	y parts"		
		formula, but makes only one error when applying it can be awarded Special Case M1. (Applying their <i>v</i> counts for one consistent error.)			

3. (c)	B1	$4x \rightarrow 2x^2 \text{ or } \frac{4x^2}{2} \text{ oe}$	
	M1	Complete method of applying limits of their x_4 and 0 to all terms of an expression of the form	
	Note	$\pm Ax^2 \pm Bxe^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$ (where $A \neq 0$, $B \neq 0$ and $C \neq 0$) and subtracting the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1.	
	.	So subtracting 0 is M0.	
	Note ln16 or 2ln4 or equivalent is fine as an upper limit. Al A correct three term exact quadratic expression in ln2.		
	For example allow for A1		
		• $32(\ln 2)^2 - 32(\ln 2) + 12$	
		• $8(2\ln 2)^2 - 8(4\ln 2) + 12$	
		• $2(4\ln 2)^2 - 32(\ln 2) + 12$	
		• $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$	
	Note	Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e.	
	Note	Also allow $32 \ln 2(\ln 2 - 1) + 12$ or $32 \ln 2 \left(\ln 2 - 1 + \frac{12}{32 \ln 2} \right)$ for A1.	
	Note	Do not apply "ignore subsequent working" for incorrect simplification.	
		Eg: $32(\ln 2)^2 - 32(\ln 2) + 12 \rightarrow 64(\ln 2) - 32(\ln 2) + 12$ or $32(\ln 4) - 32(\ln 2) + 12$	
	Note	Bracketing error: $32 \ln 2^2 - 32(\ln 2) + 12$, unless recovered is final A0.	
	Note	Notation: Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.	
	Note	5.19378 without seeing $32(\ln 2)^2 - 32(\ln 2) + 12$ is A0.	
	Note	5.19378 following from a correct $2x^2 - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)$ is M1A0.	
	Note	5.19378 from no working is M0A0.	

Question Number	Scheme	Marks
6. (a)	$A = \int_0^3 \sqrt{(3-x)(x+1)} dx , x = 1 + 2\sin\theta$	
	$\frac{dx}{d\theta} = 2\cos\theta \frac{dx}{d\theta} = 2\cos\theta \text{ or } 2\cos\theta \text{ used correctly}$	B1
	in their working. Can be implied.	
	$\left\{ \int \sqrt{(3-x)(x+1)} dx \text{ or } \int \sqrt{(3+2x-x^2)} dx \right\}$	
	$= \int \sqrt{(3 - (1 + 2\sin\theta))((1 + 2\sin\theta) + 1)} \ 2\cos\theta \ \{d\theta\}$ Substitutes for both x and dx, where $dx \neq \lambda d\theta$. Ignore $d\theta$	M1
	$= \int \sqrt{(2 - 2\sin\theta)(2 + 2\sin\theta)} \ 2\cos\theta \ \{d\theta\}$	
	$= \int \sqrt{4 - 4\sin^2\theta} 2\cos\theta \left\{ d\theta \right\}$	
	$= \int \sqrt{4 - 4(1 - \cos^2 \theta)} 2 \cos \theta \left\{ d\theta \right\} \text{or} \int \sqrt{4 \cos^2 \theta} 2 \cos \theta \left\{ d\theta \right\} \qquad \text{Applies } \cos^2 \theta = 1 - \sin^2 \theta$ see notes	M1
	$= 4 \int \cos^2 \theta d\theta, \ \{k = 4\}$ $4 \int \cos^2 \theta d\theta \text{ or } \int 4 \cos^2 \theta d\theta$	A1
	Note: $d\theta$ is required here.	l

	$0 = 1 + 2\sin\theta \text{ or } -1 = 2\sin\theta \text{ or } \sin\theta = -\frac{1}{2} \Rightarrow \frac{\theta = -\frac{\pi}{6}}{6}$ See notes $\text{and } 3 = 1 + 2\sin\theta \text{ or } 2 = 2\sin\theta \text{ or } \sin\theta = 1 \Rightarrow \frac{\theta = \frac{\pi}{2}}{2}$	
(b)	$\left\{ k \int \cos^2 \theta \left\{ d\theta \right\} \right\} = \left\{ k \right\} \int \left(\frac{1 + \cos 2\theta}{2} \right) \left\{ d\theta \right\} $ Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral	M1
	$= \{k\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)$ Integrates to give $\pm \alpha\theta \pm \beta\sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$ or $k(\pm \alpha\theta \pm \beta\sin 2\theta)$	1411
	$\left\{ \operatorname{So} 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \mathrm{d}\theta = \left[2\theta + \sin 2\theta \right]_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \right\}$	
	$= \left(2\left(\frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{2}\right)\right) - \left(2\left(-\frac{\pi}{6}\right) + \sin\left(-\frac{2\pi}{6}\right)\right)$	
	$\left\{ = (\pi) - \left(-\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right) \right\} = \frac{4\pi}{3} + \frac{\sqrt{3}}{2} \qquad \frac{4\pi}{3} + \frac{\sqrt{3}}{2} \text{or} \\ \frac{1}{6} (8\pi + 3\sqrt{3})$	A1 cao cso
		[3] 8

		Question 6 Notes						
6. (a)	B1	B1 $\frac{dx}{d\theta} = 2\cos\theta$. Also allow $dx = 2\cos\theta d\theta$. This mark can be implied by later working.						
	Note	You can give B1 for $2\cos\theta$ used correctly in their working.						
	M1	Substitutes $x = 1 + 2\sin\theta$ and their dx (from their rearranged $\frac{dx}{d\theta}$) into $\sqrt{(3-x)(x+1)} dx$.						
	Note	Condone bracketing errors here.						
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$.						
	Note	Condone substituting $dx = \cos\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 2\cos\theta$ or $dx = 2\cos\theta d\theta$						
	M1	Applies either						
		$\bullet 1 - \sin^2 \theta = \cos^2 \theta$						
		• $\lambda - \lambda \sin^2 \theta$ or $\lambda (1 - \sin^2 \theta) = \lambda \cos^2 \theta$						
		• $4 - 4\sin^2\theta = 4 + 2\cos 2\theta - 2 = 2 + 2\cos 2\theta = 4\cos^2\theta$						
	to their expression where λ is a numerical value.							
	A1	1 Correctly proves that $\int \sqrt{(3-x)(x+1)} dx$ is equal to $4\int \cos^2 \theta d\theta$ or $\int 4\cos^2 \theta d\theta$						
	Note	ote All three previous marks must have been awarded before A1 can be awarded.						
	Note	Their final answer must include $d\theta$.						
	Note	You can ignore limits for the final A1 mark.						

	B1	Evidence of a correct equation in $\sin \theta$ or $\sin^{-1} \theta$ for both x-values leading to both θ values. Eg:						
		• $0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2}$ which then leads to $\theta = -\frac{\pi}{6}$, and						
		• $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1$ which then leads to $\theta = \frac{\pi}{2}$						
	Note	Allow B1 for $x = 1 + 2\sin\left(-\frac{\pi}{6}\right) = 0$ and $x = 1 + 2\sin\left(\frac{\pi}{2}\right) = 3$						
	Note	Allow B1 for $\sin \theta = \left(\frac{x-1}{2}\right)$ or $\theta = \sin^{-1}\left(\frac{x-1}{2}\right)$ followed by $x = 0$, $\theta = -\frac{\pi}{6}$; $x = 3$, $\theta = \frac{\pi}{2}$						
(b)	NOTE	Part (b) appears as M1A1A1 on ePEN, but is now marked as M1M1A1.						
	M1	Writes down a correct equation involving $\cos 2\theta$ and $\cos^2 \theta$						
		Eg: $\cos 2\theta = 2\cos^2 \theta - 1$ or $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ or $\lambda \cos^2 \theta = \lambda \left(\frac{1 + \cos 2\theta}{2}\right)$						
		and applies it to their integral. Note: Allow M1 for a correctly stated formula (via an						
		incorrect rearrangement) being applied to their integral.						
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0$, $\beta \neq 0$						
		(can be simplified or un-simplified).						
	A1	A correct solution in part (b) leading to a "two term" exact answer.						
		Eg: $\frac{4\pi}{3} + \frac{\sqrt{3}}{2}$ or $\frac{8\pi}{6} + \frac{\sqrt{3}}{2}$ or $\frac{1}{6}(8\pi + 3\sqrt{3})$						
	Note	5.054815 from no working is M0M0A0.						
	Note	Candidates can work in terms of k (note that k is not given in (a)) for the M1M1 marks in part (b).						
	Note	If they incorrectly obtain $4\int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta d\theta$ in part (a) (or guess $k = 4$) then the final A1 is available						
		for a correct solution in part (b) only.						

Question Number	Scheme	Marks
7. (a)	$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$	
	$2 \equiv A(P-2) + BP$ Can be implied.	M1
	A = -1, $B = 1$ Either one.	A1
	giving $\frac{1}{(P-2)} - \frac{1}{P}$ See notes. cao, aef	A1
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t$	[3]
	$\int \frac{2}{P(P-2)} dP = \int \cos 2t dt$ can be implied by later working	B1 oe
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t \ \left(+c\right)$ $\pm \lambda \ln(P-2) \pm \mu \ln P,$ $\lambda \neq 0, \ \mu \neq 0$	M1
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$	A1
	$\{t=0, P=3 \Rightarrow\}$ $\ln 1 - \ln 3 = 0 + c$ $\{\Rightarrow c = -\ln 3 \text{ or } \ln(\frac{1}{3})\}$ See notes	M1

	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t - \ln 3$ $\ln\left(\frac{3(P-2)}{P}\right) = \frac{1}{2}\sin 2t$	
	Starting from an equation of the for $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + \\ \frac{3(P-2)}{P} = \mathrm{e}^{\frac{1}{2}\sin 2t}$ $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method eliminate their logarithm Must have a constant of integration that need not be evaluated (see not	c, to M1 s.
	$3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P - 6 = Pe^{\frac{1}{2}\sin 2t}$ A complete method of rearranging make P the subjectives $3P - Pe^{\frac{1}{2}\sin 2t} = 6 \Rightarrow P(3 - e^{\frac{1}{2}\sin 2t}) = 6$ $P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} *$ Must have a constant of integration that need not be evaluated (see not constant). Correct productions of the constant of the evaluation of the ev	et. dM1
(c)	{population = $4000 \Rightarrow$ } $P = 4$ States $P = 4$ or applies $P = \frac{1}{2}\sin 2t = \ln\left(\frac{3(4-2)}{4}\right)$ {= $\ln\left(\frac{3}{2}\right)$ } Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$ $\lambda \neq 0, k > 0$ where λ and k are numeric	al M1
	values and λ can be $t = 0.4728700467$ anything that rounds to 0.4 Do not apply isw he	73 A1

Question Number	Scheme		Marks
	Method 2 for Q7(b)		
7. (b)	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t \ (+c)$	As before for	B1M1A1
	$ \ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c $		
		Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$,	
	$\frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c}$ or $\frac{(P-2)}{P} = Ae^{\frac{1}{2}\sin 2t}$	$\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration	3 rd M1
		that need not be evaluated (see note)	
	$(P-2) = APe^{\frac{1}{2}\sin 2t} \Rightarrow P - APe^{\frac{1}{2}\sin 2t} = 2$	A complete method of rearranging to	
		make P the subject. Condone sign slips or constant errors. Must have a	4th dM1
	$\Rightarrow P(1 - Ae^{\frac{1}{2}\sin 2t}) = 2 \Rightarrow P = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2t})}$	constant of integration that need	
	(1 110)	not be evaluated (see note)	
	$\{t=0, P=3 \Rightarrow\}$ $3=\frac{2}{(1-Ae^{\frac{1}{2}\sin 2(0)})}$	See notes (Allocate this mark as the	2nd M1
	$(1 - Ae^{\frac{1}{2}\sin 2(0)})$	2 nd M1 mark on ePEN).	2
	$\left\{ \Rightarrow \ 3 = \frac{2}{(1-A)} \Rightarrow A = \frac{1}{3} \right\}$		
	$\Rightarrow P = \frac{2}{\left(1 - \frac{1}{3}e^{\frac{1}{2}\sin 2t}\right)} \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} *$	Correct proof.	A1 * cso

		Question 7 Notes					
7. (a)	М1	Forming a correct identity. For example, $2 \equiv A(P-2) + BP$ from $\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$					
	Note	A and B are not referred to in question.					
	A1	Either one of $A = -1$ or $B = 1$.					
	A1	$\frac{1}{(P-2)} - \frac{1}{P}$ or any equivalent form. This answer <i>cannot</i> be recovered from part (b).					
	Note	1A1A1 can also be given for a candidate who finds both $A = -1$ and $B = 1$ and $\frac{A}{P} + \frac{B}{(P-2)}$					
		is seen in their working.					
	Note	Candidates can use 'cover-up' rule to write down $\frac{1}{(P-2)} - \frac{1}{P}$, so as to gain all three marks.					
	Note	Equating coefficients from $2 = A(P-2) + BP$ gives $A + B = 2, -2A = 2 \Rightarrow A = -1, B = 1$					
7. (b)	B1	Separates variables as shown on the Mark Scheme. dP and dt should be in the correct positions,					
		though this mark can be implied by later working. Ignore the integral signs.					
	Note	Eg: $\int \frac{2}{P^2 - 2P} dP = \int \cos 2t dt \text{ or } \int \frac{1}{P(P-2)} dP = \frac{1}{2} \int \cos 2t dt \text{ o.e. are also fine for B1.}$					
	1st M1	$\pm \lambda \ln(P-2) \pm \mu \ln P$, $\lambda \neq 0$, $\mu \neq 0$. Also allow $\pm \lambda \ln(M(P-2)) \pm \mu \ln NP$; M,N can be 1.					
	Note	te Condone $2\ln(P-2) + 2\ln P$ or $2\ln(P(P-2))$ or $2\ln(P^2-2P)$ or $\ln(P^2-2P)$					
	1st A1	Correct result of $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ or $2\ln(P-2) - 2\ln P = \sin 2t$					
		o.e. with or without $+c$					
	2 nd M1	Some evidence of using both $t = 0$ and $P = 3$ in an integrated equation containing a constant of					
	3rd M1	integration. Eg: c or A , etc. Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$,					
	3 1411	applies a fully correct method to eliminate their logarithms.					
	4th M1	dependent on the third method mark being awarded.					
		A complete method of rearranging to make P the subject. Condone sign slips or constant errors.					
	Note	For the 3 rd M1 and 4 th M1 marks, a candidate needs to have included a constant of integration, in their working. eg. c, A, ln A or an evaluated constant of integration.					
		/					
	2 nd A1	Correct proof of $P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$. Note: This answer is given in the question.					
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \text{ followed by } \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is } 3^{\text{rd}} \text{ M0, } 4^{\text{th}} \text{ M0, } 2^{\text{nd}} \text{ A0.}$					
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \to \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c} \to \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is final M1M0A0}$					

		4 th M1 for making P the subject Note there are three type of manipulations here which are considered acceptable for making					
	P the su						
	(1) M1 for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t} \Rightarrow P(3-e^{\frac{1}{2}\sin 2t}) = 6$						
		$\Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$					
	(2) M1	for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - \frac{6}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - e^{\frac{1}{2}\sin 2t} = \frac{6}{P} \Rightarrow \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$					
	(3) M1	for $\left\{ \ln(P-2) + \ln P = \frac{1}{2}\sin 2t + \ln 3 \Rightarrow \right\} P(P-2) = 3e^{\frac{1}{2}\sin 2t} \Rightarrow P^2 - 2P = 3e^{\frac{1}{2}\sin 2t}$					
		$\Rightarrow (P-1)^2 - 1 = 3e^{\frac{1}{2}\sin 2t}$ leading to $P =$					
(c)	M1	States $P = 4$ or applies $P = 4$					
	M1	Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, where λ and k are numerical values and λ can be 1					
	A1	anything that rounds to 0.473. (Do not apply isw here)					
	Note Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)						
	Note Use of $P = 4000$: Without the mention of $P = 4$, $\frac{1}{2}\sin 2t = \ln 2.9985$ or $\sin 2t = 2\ln 2.9985$						
	Note	or $\sin 2t = 2.1912$ will usually imply M0M1A0 Use of Degrees: $t = \text{awrt } 27.1$ will usually imply M1M1A0					

Question Number	Scheme		Marks
8. (a)	$\left\{ y = 3^x \Rightarrow \right\} \frac{\mathrm{d}y}{\mathrm{d}x} = 3^x \ln 3$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3^x \ln 3 \text{ or } \ln 3 \left(e^{x \ln 3} \right) \text{ or } y \ln 3$	B1
	Either T: $y - 9 = 3^2 \ln 3(x - 2)$ or T: $y = (3^2 \ln 3)x + 9 - 18 \ln 3$, where $9 = (3^2 \ln 3)x + 9 - 18 \ln 3$	n3)(2) + c See notes	M1
	$\{\text{Cuts } x\text{-axis } \Rightarrow y = 0 \Rightarrow \}$		
	$-9 = 9\ln 3(x-2)$ or $0 = (3^2\ln 3)x + 9 - 18\ln 3$,	Sets $y = 0$ in their tangent equation and progresses to $x =$	M1
	So, $x = 2 - \frac{1}{\ln 3}$	$2 - \frac{1}{\ln 3}$ or $\frac{2\ln 3 - 1}{\ln 3}$ o.e.	A1 cso
			[4]
(b)	$V = \pi \int (3^x)^2 \{ dx \} \text{ or } \pi \int 3^{2x} \{ dx \} \text{ or } \pi \int 9^x \{ dx \}$	$V = \pi \int \left(3^{x}\right)^{2} \text{ with or without } dx,$	Bl o.e.
		which can be implied	
		Eg: either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3) 3^{2x}$	\ \
	$= \left\{\pi\right\} \left(\frac{3^{2x}}{2\ln 3}\right) \text{or} = \left\{\pi\right\} \left(\frac{9^x}{\ln 9}\right)$	or $9^x \to \frac{9^x}{\pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9)9^x$, $\underline{\alpha \in }$	M1
	$3^{2x} ightarrow \frac{1}{2}$	$\frac{3^{2x}}{\ln 3}$ or $9^x \to \frac{9^x}{\ln 9}$ or $e^{2x \ln 3} \to \frac{1}{2 \ln 3} (e^{2x \ln 3})$	Al o.e.

	$ \left\{ V = \pi \int_0^2 3^{2x} \mathrm{d}x = \left\{ \pi \right\} \left[\frac{3^{2x}}{2 \ln 3} \right]_0^2 \right\} = \left\{ \pi \right\} \left(\frac{3^4}{2 \ln 3} - \frac{1}{2 \ln 3} \right) \left\{ = \frac{40\pi}{\ln 3} \right\} $ Dependent on the previous method mark. Substitutes $x = 2$ and $x = 0$ and subtracts the correct way round.	dM1
	$V_{\text{cone}} = \frac{1}{3}\pi(9)^2 \left(\frac{1}{\ln 3}\right) \left\{ = \frac{27\pi}{\ln 3} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi(9)^2 \left(2 - \text{their } (a)\right)$. See notes.	B1ft
	$\left\{ \text{Vol}(S) = \frac{40\pi}{\ln 3} - \frac{27\pi}{\ln 3} \right\} = \frac{13\pi}{\ln 3}$ $\frac{13\pi}{\ln 3} \text{ or } \frac{26\pi}{\ln 9} \text{ or } \frac{26\pi}{2\ln 3} \text{ etc., isw}$	Al o.e.
	{Eg: $p = 13\pi$, $q = \ln 3$ }	[6]
(h)	Alternative Method 1. Use of a substitution	10
(b)	Alternative Method 1: Use of a substitution	
	$V = \pi \int \left(3^{x}\right)^{2} \left\{ dx \right\}$	B1 o.e.
	$\left\{ u = 3^x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 3^x \ln 3 = u \ln 3 \right\} V = \left\{ \pi \right\} \int \frac{u^2}{u \ln 3} \left\{ \mathrm{d}u \right\} = \left\{ \pi \right\} \int \frac{u}{\ln 3} \left\{ \mathrm{d}u \right\}$	
	$= \left\{\pi\right\} \left(\frac{u^2}{2\ln 3}\right) \qquad \qquad \left(3^x\right)^2 \to \frac{u^2}{\pm \alpha (\ln 3)} \text{ or } \pm \alpha (\ln 3)u^2, \text{ where } u = 3^x$	M1
	$\left(3^{x}\right)^{2} \rightarrow \frac{u^{2}}{2(\ln 3)}, \text{ where } u = 3^{x}$	A1
	$\left\{V = \pi \int_0^2 \left(3^x\right)^2 dx = \left\{\pi\right\} \left[\frac{u^2}{2\ln 3}\right]_1^9\right\} = \left\{\pi\right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3}\right) \left\{ = \frac{40\pi}{\ln 3} \right\}$ Substitutes limits of 9 and 1 in <i>u</i> (or 2 and 0 in <i>x</i>) and subtracts the correct way round.	dM1
	then apply the main scheme.	

	Question 8 Notes			
8. (a)	B1	$\frac{dy}{dx} = 3^x \ln 3$ or $\ln 3 \left(e^{x \ln 3} \right)$ or $y \ln 3$. Can be implied by later working.		
	MI	Substitutes either $x = 2$ or $y = 9$ into their $\frac{dy}{dx}$ which is a function of x or y to find m_T and		
		 either applies y - 9 = (their m_T)(x - 2), where m_T is a numerical value. 		
		• or applies $y = (\text{their } m_T)x + \text{their } c$, where m_T is a numerical value and c is found		
		by solving $9 = (\text{their } m_T)(2) + c$		
	Note	The first M1 mark can be implied from later working.		
	M1	Sets $y = 0$ in their tangent equation, where m_T is a numerical value, (seen or implied)		
		and progresses to $x =$		
	A1	An exact value of $2 - \frac{1}{\ln 3}$ or $\frac{2 \ln 3 - 1}{\ln 3}$ or $\frac{\ln 9 - 1}{\ln 3}$ by a correct solution only.		
	Note	Allow A1 for $2 - \frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2 \ln 3 - 1)}{\lambda \ln 3}$ or $\frac{\lambda(\ln 9 - 1)}{\lambda \ln 3}$ or $2 - \frac{\lambda}{\lambda \ln 3}$, where λ is an integer,		
		and ignore subsequent working.		
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$) is M0 M0 in part (a).		
	Note	Candidates who invent a value for m_r (which bears no resemblance to their gradient function)		
	20000000000	cannot gain the 1st M1 and 2nd M1 mark in part (a).		
	Note	A decimal answer of 1.089760773 (without a correct exact answer) is A0.		

	Note M1	Eg: Allow B1 for $\pi \int (3^x)^2 \{dx\}$ or $\pi \int 3^{2x} \{dx\}$ or $\pi \int 9^x \{dx\}$ or $\pi \int (e^{x \ln 3})^2 \{dx\}$ or $\pi \int (e^{x \ln 3})^2 \{dx\}$ or $\pi \int (e^{x \ln 3})^2 \{dx\}$ with or without dx Either $3^{2x} \to \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)3^{2x}$ or $9^x \to \frac{9^x}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^x$					
	М1						
	M1	Either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)3^{2x}$ or $9^x \rightarrow \frac{9^x}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^x$					
		$e^{2x\ln 3} \rightarrow \frac{e^{2x\ln 3}}{\pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3)e^{2x\ln 3}$ or $e^{x\ln 9} \rightarrow \frac{e^{x\ln 9}}{\pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9)e^{x\ln 9}$, etc where $\alpha \in $					
	Note	$3^{2x} \rightarrow \frac{3^{2x+1}}{\pm \alpha (\ln 3)}$ or $9^x \rightarrow \frac{9^{x+1}}{\pm \alpha (\ln 3)}$ are allowed for M1					
	Note	$3^{2x} \to \frac{3^{2x+1}}{2x+1}$ or $9^x \to \frac{9^{x+1}}{x+1}$ are both M0					
	Note	M1 can be given for $9^{2x} \rightarrow \frac{9^{2x}}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^{2x}$					
	A1	Correct integration of 3^{2x} . Eg: $3^{2x} \rightarrow \frac{3^{2x}}{2 \ln 3}$ or $\frac{3^{2x}}{\ln 9}$ or $9^x \rightarrow \frac{9^x}{\ln 9}$ or $e^{2x \ln 3} \rightarrow \frac{1}{2 \ln 3} (e^{2x \ln 3})$					
	dM1	dependent on the previous method mark being awarded.					
	Note	Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.					
	dM1	dependent on the previous method mark being awarded.					
	Note	Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.					
		1					
	B1ft	$V_{\text{cone}} = \frac{1}{3}\pi(9)^2 (2 - \text{their answer to part } (a)).$					
		Sight of $\frac{27\pi}{\ln 3}$ implies the B1 mark.					
	Note	ln 3 Alternatively they can apply the volume formula to the line segment. They need to achieve the					
	Note	result highlighted by **** on either page 29 or page 30 in order to obtain the B1ft mark.					
	A1 $\frac{13\pi}{\ln 3}$ or $\frac{26\pi}{\ln 9}$ or $\frac{26\pi}{2\ln 3}$, etc., where their answer is in the form $\frac{p}{q}$						
	Note Note	The π in the volume formula is only needed for the 1 st B1 mark and the final A1 mark. A decimal answer of 37.17481128 (without a correct exact answer) is A0.					
		A candidate who applies $\int 3^x dx$ will either get B0 M0 A0 M0 B0 A0 or B0 M0 A0 M0 B1 A0					
	Note	$\pi \int 3^{x^2} dx$ unless recovered is B0.					
	Note	Be careful! A correct answer may follow from incorrect working					
		$V = \pi \int_0^2 3^{x^2} dx - \frac{1}{3}\pi (9)^2 \left(\frac{1}{\ln 3}\right) = \pi \left[\frac{3^{x^2}}{2\ln 3}\right]_0^2 - \frac{27\pi}{\ln 3} = \frac{\pi 3^4}{2\ln 3} - \frac{\pi}{2\ln 3} - \frac{27\pi}{\ln 3} = \frac{13\pi}{\ln 3}$					
		would score B0 M0 A0 dM0 M1 A0.					
		2 20					

8. (b)
$$\frac{2^{\text{nd}} \text{ B1ft mark for finding the Volume of a Cone}}{V_{\text{cone}} = \pi \int_{2-\frac{1}{\ln 3}}^{2} (9x \ln 3 - 18 \ln 3 + 9)^{2} dx}$$

$$= \pi \left[\frac{(9x \ln 3 - 18 \ln 3 + 9)^{3}}{27 \ln 3} \right]_{2-\frac{1}{\ln 3} \text{ or their part (a) answer}}^{2}$$

$$= \pi \left(\frac{(18 \ln 3 - 18 \ln 3 + 9)^{3}}{27 \ln 3} \right) - \left(\frac{(9\left(2 - \frac{1}{\ln 3}\right) \ln 3 - 18 \ln 3 + 9\right)^{3}}{27 \ln 3} \right)$$

$$= \pi \left(\left(\frac{729}{27 \ln 3} \right) - \left(\frac{(18 \ln 3 - 9 - 18 \ln 3 + 9)^{3}}{27 \ln 3} \right) \right)$$

$$= \pi \left(\frac{729}{27 \ln 3} \right) - \left(\frac{(18 \ln 3 - 9 - 18 \ln 3 + 9)^{3}}{27 \ln 3} \right)$$

8. (b)
$$\frac{2^{\text{nd}} \text{ B1ft mark for finding the Volume of a Cone}}{\text{Alternative method 2:}}$$

$$V_{\text{cone}} = \pi \int_{2^{-1}}^{2} (9x \ln 3 - 18 \ln 3 + 9)^{2} dx$$

$$\begin{aligned} & = \pi \int_{2-\frac{1}{\ln 3}}^{2} (81x^{2} (\ln 3)^{2} - 324x (\ln 3)^{2} + 162x \ln 3 - 324 \ln 3 + 324(\ln 3)^{2} + 81) dx \\ & = \pi \left[27x^{3} (\ln 3)^{2} - 162x^{2} (\ln 3)^{2} + 81x^{2} \ln 3 - 324x \ln 3 + 324x (\ln 3)^{2} + 81x \right]_{2-\frac{1}{\ln 3}}^{2} \end{aligned} \qquad \begin{cases} \text{Award B1ft here where their lower limit is } 2 - \frac{1}{\ln 3} \\ \text{*****} \end{cases}$$

$$= \pi \left[\frac{(216(\ln 3)^{2} - 648(\ln 3)^{2} + 324 \ln 3 - 648 \ln 3 + 648(\ln 3)^{2} + 162)}{-\left[27\left(2 - \frac{1}{\ln 3}\right)^{3} (\ln 3)^{2} - 162\left(2 - \frac{1}{\ln 3}\right)^{2} (\ln 3)^{2} + 81\left(2 - \frac{1}{\ln 3}\right)^{2} \ln 3 \right] - 224\left(2 - \frac{1}{\ln 3}\right) \ln 3 + 324\left(2 - \frac{1}{\ln 3}\right) (\ln 3)^{2} + 81\left(2 - \frac{1}{\ln 3}\right) \\ & = \frac{27\left(8 - \frac{12}{\ln 3} + \frac{6}{(\ln 3)^{2}} - \frac{1}{(\ln 3)^{3}}\right) (\ln 3)^{2} - 162\left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^{2}}\right) (\ln 3)^{2}}{-\frac{1}{(\ln 3)^{3}} (\ln 3)^{2} - 162\left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^{2}}\right) (\ln 3)^{2}} \right]}$$

$$= \pi \left(216(\ln 3)^2 - 324\ln 3 + 162 \right) - \left(27 \left(8 - \frac{12}{\ln 3} + \frac{6}{(\ln 3)^2} - \frac{1}{(\ln 3)^3} \right) (\ln 3)^2 - 162 \left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^2} \right) (\ln 3)^2 \right) + 81 \left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^2} \right) (\ln 3)^2 + 81 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^2 + 81 \left(2 - \frac{1}{\ln 3} \right) \right) \right)$$

$$= \pi \left(216(\ln 3)^2 - 324\ln 3 + 162 - \frac{27}{\ln 3} - 648(\ln 3)^2 + 648\ln 3 - 162 \right)$$

$$+ 324\ln 3 - 324 + \frac{81}{\ln 3} - 648\ln 3 + 324$$

$$+ 648(\ln 3)^2 - 324\ln 3 + 162 - \frac{81}{\ln 3}$$

$$= \pi \left(\left(216(\ln 3)^2 - 324\ln 3 + 162 \right) - \left(216(\ln 3)^2 - 324\ln 3 + 162 - \frac{27}{\ln 3} \right) \right)$$

$$= \frac{27\pi}{\ln 3}$$

June 2014 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme					Mark	S
3.	x 1 y 1.42857	2 0.90326	3 0.682116	4 0.55556	$y = \frac{10}{2x + 5\sqrt{x}}$		
(a)	$\{\text{At } x = 3,\} \ y = 0.6$	58212 (5 dp)			0.68212	B1 cao	
(b)	$\frac{1}{2} \times 1 \times \boxed{1.42857 + }$	0.55556+2(0.	90326 + their 0	.68212)]	Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ For structure of []	1	[1]
	$\left\{=\frac{1}{2}(5.15489)\right\}=$	2.577445 = 2.5	5774 (4 dp)		anything that rounds to 2.5774	Al	[3]
(c)	 Overestima 						[e]
		pezia lie above which gives ref convex an be implied)	erence to the ex	tra area		В1	[1]
(d)	$\left\{ u = \sqrt{x} \Longrightarrow \right\} \frac{\mathrm{d}u}{\mathrm{d}x} = 0$	$\frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u}$	= 2 <i>u</i>			В1	
	$\int \frac{10}{2u^2 + 5u} \cdot 2u \mathrm{d}$	du	Either $\left\{\int_{\alpha} \right\}$	$\frac{\pm ku}{u^2 \pm \beta u} \left\{ \mathrm{d}u \right\}$	or $\left\{ \int \frac{\pm k}{u(\alpha u^2 \pm \beta u)} \left\{ du \right\} \right\}$	Ml	

	{= ∫	$\frac{20}{2u+5} du = \frac{20}{2} \ln(2u+5)$ $\frac{\pm \lambda \ln(2u+5) \text{ or } \pm \lambda \ln\left(u+\frac{5}{2}\right), \ \lambda \neq 0}{\text{with no other terms.}}$ $\frac{20}{2u+5} \rightarrow \frac{20}{2} \ln(2u+5) \text{ or } 10 \ln\left(u+\frac{5}{2}\right)$	M1 A1 cso					
	(-	$\left\{ \left[\frac{20}{2} \ln(2u+5) \right]_{1}^{2} \right\} = 10 \ln(2(2)+5) - 10 \ln(2(1)+5)$ Substitutes limits of 2 and 1 in <i>u</i> (or 4 and 1 in <i>x</i>) and subtracts the correct way round.						
	10ln9	$9 - 10 \ln 7$ or $10 \ln \left(\frac{9}{7}\right)$ or $20 \ln 3 - 10 \ln 7$	A1 oe cso [6]					
			11					
		Question 3 Notes						
3. (a)	B1	0.68212 correct answer only. Look for this on the table or in the candidate's working.						
(b)	B1	Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent.						
	M1	For structure of trapezium rule []						
	Note A1	No errors are allowed [eg. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a repeated anything that rounds to 2.5774	y ordinate].					
	Note	Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 2.5131	4428)					
3. (b) contd	Note	1						
		Bracketing mistake: Unless the final answer implies that the calculation has been done correctly award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489). award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).						
	Alternative method: Adding individual trapezia Area $\approx 1 \times \left[\frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$ B1: 1 and a divisor of 2 on all terms inside brackets.							
	M1 A1	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ign A1: anything that rounds to 2.5774	oring the 2.					
(c)	B1	Overestimate and either trapezia lie above curve or a diagram that gives reference to the ex	tra area					
(-)		eg. This diagram is sufficient. It must show the top of a trapezium lying above the curve.						
	Nete	or concave or convex or $\frac{d^2y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.						
	Note	Reason of "gradient is negative" by itself is B0.						

(d)	B1	$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} du = \frac{1}{2\sqrt{x}} dx \text{or} 2\sqrt{x} du = dx \text{or} dx = 2u du \text{or} \frac{dx}{du} = 2u \text{o.e.}$
	M1	Applying the substitution and achieving $\left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\} \text{ or } \left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)} \left\{ du \right\},$
		$k, \alpha, \beta \neq 0$. Integral sign and du not required for this mark.
	M1	Cancelling u and integrates to achieve $\pm \lambda \ln(2u + 5)$ or $\pm \lambda \ln\left(u + \frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.
	A1	cso. Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$, un-simplified or simplified.
	Note	BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.
		So $\int \frac{10}{2u+5} du = 10 \ln(2u+5)$ WOULD BE A0 and final A0.
	M1	Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtracts the correct way round.
	A1	Exact answers of either $10 \ln 9 - 10 \ln 7$ or $10 \ln \left(\frac{9}{7}\right)$ or $20 \ln 3 - 10 \ln 7$ or $20 \ln \left(\frac{3}{\sqrt{7}}\right)$ or $\ln \left(\frac{9^{10}}{7^{10}}\right)$
		or equivalent. Correct solution only.
	Note	You can ignore subsequent working which follows from a correct answer.
	Note	A decimal answer of 2.513144283 (without a correct exact answer) is A0.

Question Number	Scheme		Ma	rks
6.0	$\int x e^{4x} dx = \frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} \{dx\}$	$\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \}, \alpha \neq 0, \beta > 0$	M1	
6. (1)	$\int_{0}^{\infty} xe^{-x} dx = \frac{1}{4}xe^{-x} - \int_{0}^{\infty} \frac{1}{4}e^{-x} \left\{ dx \right\}$	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$	Al	
	$= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \left\{ + c \right\}$	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$	Al	
			l	[3]
	$8 8(2x-1)^{-2}$	$\pm \lambda (2x-1)^{-2}$	M1	
(ii)	$\int \frac{8}{(2x-1)^3} \mathrm{d}x = \frac{8(2x-1)^{-2}}{(2)(-2)} \{+c\}$	$\frac{8(2x-1)^{-2}}{(2)(-2)}$ or equivalent.	Al	
	$\left\{ = -2(2x-1)^{-2} \left\{ + c \right\} \right\}$	{Ignore subsequent working}.		[2]
(iii)	$\frac{dy}{dx} = e^x \csc 2y \csc y \qquad y = \frac{\pi}{6} \text{ at } x = 0$			

$$\frac{\text{Main Scheme}}{\int \frac{1}{\cos \sec 2y \csc y} dy} = \int e^x dx \qquad \text{or} \quad \int \sin 2y \sin y dy = \int e^x dx$$

$$\int 2\sin y \cos y \sin y dy = \int e^x dx \qquad \text{Applying } \frac{1}{\cos \csc 2y} \text{ or } \sin 2y \to 2\sin y \cos y \qquad \text{M1}$$

$$\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\} \qquad 2\sin^2 y \cos y \to \frac{2}{3}\sin^3 y \qquad \text{A1}$$

$$e^x \to e^x \qquad \text{B1}$$

$$\frac{2}{3}\sin^3 \left(\frac{\pi}{6}\right) = e^0 + c \quad \text{or} \quad \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0$$
in an integrated equation containing c

$$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \quad \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \qquad \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \qquad \text{A1}$$

$$\frac{\text{Alternative Method 1}}{\left\{ -\frac{\pi}{3} \right\}} = \frac{\left\{ x + \frac{\pi}{3} \right\} - \left\{ -\frac{\pi}{3} \right\}}{\left\{ -\frac{\pi}{3} \right\}} = \frac{\left\{ x + \frac{\pi}{3} \right\} - \left\{ -\frac{\pi}{3} \right\}}{\left\{ -\frac{\pi}{3} \right\}} = \frac{\left\{ x + \frac{\pi}{3} \right\} - \left\{ -\frac{\pi}{3} \right\}}{\left\{ -\frac{\pi}{3} \right\}} = \frac{\pi}{3} = \frac$$

Alternative Method 1
$$\int \frac{1}{\csc 2y \csc y} \, dy = \int e^x \, dx \qquad \text{or} \quad \int \sin 2y \sin y \, dy = \int e^x \, dx$$

$$\int -\frac{1}{2} (\cos 3y - \cos y) \, dy = \int e^x \, dx \qquad \qquad \sin 2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y \qquad \text{M1}$$
Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y \qquad \text{M1}$

$$-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \qquad -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) \qquad \text{A1}$$

$$e^x \rightarrow e^x \text{ as part of solving their DE.}$$
B1
$$-\frac{1}{2} \left(\frac{1}{3} \sin \left(\frac{3\pi}{6} \right) - \sin \left(\frac{\pi}{6} \right) \right) = e^0 + c \quad \text{or} \quad -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2} \right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$$

$$\begin{cases}
\Rightarrow c = -\frac{11}{12} \end{cases} \qquad \text{giving} \quad -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} \qquad -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$$
A1

[7]

		Question 6 Notes
6. (i)	M1	Integration by parts is applied in the form $\pm \alpha x e^{4x} - \int \beta e^{4x} \{dx\}$, where $\alpha \neq 0$, $\beta > 0$.
		(must be in this form).
	l	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \left\{ dx \right\} \text{or equivalent.}$
	A1	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be un-simplified.
	isw	You can ignore subsequent working following on from a correct solution.
	SC	SPECIAL CASE: A candidate who uses $u = x$, $\frac{dv}{dx} = e^{4x}$, writes down the correct "by parts"
		formula,
		but makes only one error when applying it can be awarded Special Case M1.
(ii)	M1	$\pm \lambda (2x-1)^{-2}$, $\lambda \neq 0$. Note that λ can be 1.
	A1	$\frac{8(2x-1)^{-2}}{(2)(-2)}$ or $-2(2x-1)^{-2}$ or $\frac{-2}{(2x-1)^2}$ with/without + c. Can be un-simplified.
	Note	You can ignore subsequent working which follows from a correct answer.

(iii)	B1	Separates variables as shown. dy and dx should be in the correct positions, though this mark implied by later working. Ignore the integral signs.							
	Note	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$ or $\int \sin 2y \sin y = \int e^x$							
	M1	$\frac{1}{\csc 2y} \to 2\sin y \cos y \text{or} \sin 2y \to 2\sin y \cos y \text{or} \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$							
		seen anywhere in the candidate's working to	(iii).						
	M1	Integrates to give $\pm \mu \sin^3 y$, $\mu \neq 0$ or $\pm \alpha$	$\sin 3y \pm \beta \sin y$, $\alpha \neq 0$, $\beta \neq 0$						
	A1	$2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$ (with no extra ter	ms) or integrates to give $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin 3y \right)$	$\operatorname{in} y$					
	B1	Evidence that ex has been integrated to give	e e as part of solving their DE.						
	M1	0	0 in an integrated or changed equation cont	aining c.					
	Note	that is mark can be implied by the correct va	lue of c.						
	A1	3 12 0 2	$\frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \text{or} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \text{or any equivalent correct answer.}$						
	Note		You can ignore subsequent working which follows from a correct answer.						
	_	e Method 2 (Using integration by parts twice	ce)	ı					
	$\int \sin 2y \sin 2y$	$1 y \mathrm{d} y = \int \mathrm{e}^x \mathrm{d} x$		B1 oe					
			Applies integration by parts twice to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$	M2					
	$\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y = e^x \left\{ + c \right\}$ $\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$								
			(simplified or un-simplified) $e^{x} \rightarrow e^{x} \text{ as part of solving their DE.} B1$						
			as in the main scheme	M1					
	$\frac{1}{3}\cos y\sin$	$2y - \frac{2}{3}\sin y \cos 2y = e^x - \frac{11}{12}$	$-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$	A1					

Question Number	Scheme	Marks
1. (a)	$\int x^2 e^x dx, 1^{st} \text{ Application: } \begin{cases} u = x^2 \implies \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}, 2^{nd} \text{ Application: } \begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$	
	$ = x^2 e^x - \int \lambda x e^x \left\{ dx \right\}, \ \lambda > 0 $	M1
	$x^2 e^x - \int 2x e^x dx$	Al oe
	Either $\pm Ax^2 e^x \pm Bx e^x \pm C \int e^x \{dx\}$ or for $\pm K \int x e^x \{dx\} \rightarrow \pm K \left(x e^x - \int e^x \{dx\}\right)$	M1
	$= x^{2}e^{x} - 2(xe^{x} - e^{x}) \{+c\}$ $\pm Ax^{2}e^{x} \pm Bxe^{x} \pm Ce^{x}$ Correct answer, with/without + c	M1 A1
(b)	$\left\{ \begin{bmatrix} x^2 e^x - 2(xe^x - e^x) \end{bmatrix}_0^1 \right\}$ $= \left(1^2 e^1 - 2(1e^1 - e^1) \right) - \left(0^2 e^0 - 2(0e^0 - e^0) \right)$ Applies limits of 1 and 0 to an expression of the form $\pm Ax^2 e^x \pm Bxe^x \pm Ce^x$, $A \neq 0$, $B \neq 0$ and $C \neq 0$ and subtracts the correct way round. $e - 2 \text{cso}$	[5] M1 A1 oe
		7
(-)	Notes for Question 1	
(a)	M1: Integration by parts is applied in the form $x^2e^x - \int \lambda x e^x \{dx\}$, where $\lambda > 0$. (must be in this form	orm).

	Notes for Question 1						
(a)	M1: Integration by parts is applied in the form $x^2e^x - \int \lambda x e^x \{dx\}$, where $\lambda > 0$. (must be in this form).						
	A1: $x^2 e^x - \int 2x e^x \{dx\}$ or equivalent.						
	M1: Either achieving a result in the form $\pm Ax^2 e^x \pm Bx e^x \pm C \int e^x \{dx\}$ (can be implied)						
	(where $A \neq 0$, $B \neq 0$ and $C \neq 0$) or for $\pm K \int x e^x \{dx\} \rightarrow \pm K \left(x e^x - \int e^x \{dx\}\right)$						
	M1: $\pm Ax^2 e^x \pm Bx e^x \pm C e^x$ (where $A \neq 0$, $B \neq 0$ and $C \neq 0$)						
	A1: $x^2e^x - 2(xe^x - e^x)$ or $x^2e^x - 2xe^x + 2e^x$ or $(x^2 - 2x + 2)e^x$ or equivalent with/without $+c$.						
(b)	M1: Complete method of applying limits of 1 and 0 to their part (a) answer in the form $\pm Ax^2e^x \pm Bxe^x \pm Ce^x$, (where $A \neq 0$, $B \neq 0$ and $C \neq 0$) and subtracting the correct way round.						
	Evidence of a proper consideration of the limit of 0 (as detailed above) is needed for M1. So, just subtracting zero is M0.						
	A1: $e-2$ or e^1-2 or $-2+e$. Do not allow $e-2e^0$ unless simplified to give $e-2$.						
	Note: that 0.718 without seeing $e-2$ or equivalent is A0.						
	WARNING: Please note that this A1 mark is for correct solution only.						
	So incorrect $[\ldots]_0^l$ leading to $e-2$ is A0.						
	Note: If their part (a) is correct candidates can get M1A1 in part (b) for e - 2 from no working.						
	Note: 0.718 from no working is M0A0						

Question Number	Scheme		Marks	
3. (a)	1.154701		B1 cao	
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{6}$; $\times \left[1 + 2(1.035276 + \text{their } 1.154701) + 1.414214 \right]$		B1; <u>M1</u>	[1]
	$= \frac{\pi}{12} \times 6.794168 = 1.778709023 = 1.7787 $ (4 dp)	1.7787 or awrt 1.7787		[3]
(c)	$V = \pi \int_0^{\frac{\pi}{2}} \left(\sec\left(\frac{x}{2}\right) \right)^2 dx$	For $\pi \int \left(\sec\left(\frac{x}{2}\right) \right)^2$. Ignore limits and dx.	B1	
	$= \{\pi\} \left[2 \tan \left(\frac{x}{2} \right) \right]_{0}^{\frac{\pi}{2}}$	Can be implied. $\pm \lambda \tan\left(\frac{x}{2}\right)$	M1	
		$2\tan\left(\frac{x}{2}\right)$ or equivalent	A1	
	$=2\pi$	2π	Al cao c	so [4] 8

Notes for Question 3 B1: 1.154701 correct answer only. Look for this on the table or in the candidate's working. (a) **B1**: Outside brackets $\frac{1}{2} \times \frac{\pi}{6}$ or $\frac{\pi}{12}$ or awrt 0.262 **(b)** M1: For structure of trapezium rule A1: anything that rounds to 1.7787 Note: It can be possible to award: (a) B0 (b) B1M1A1 (awrt 1.7787) Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is 1.762747174... <u>Note:</u> Award B1M1A1 for $\frac{\pi}{12}(1+1.414214)+\frac{\pi}{6}(1.035276+\text{their }1.154701)=1.778709023...$ Bracketing mistake: Unless the final answer implies that the calculation has been done correctly, Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{6} + 1 + 2(1.035276 + \text{their } 1.154701) + 1.414214$ (nb: answer of 7.05596...). Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{6}$ (1 + 1.414214) + 2(1.035276 + their 1.154701) (nb: answer of 5.01199...). Alternative method for part (b): Adding individual trapezia Area $\approx \frac{\pi}{6} \times \left[\frac{1+1.035276}{2} + \frac{1.035276+1.154701}{2} + \frac{1.154701+1.414214}{2} \right] = 1.778709023...$ **B1:** $\frac{\pi}{6}$ and a divisor of 2 on all terms inside brackets. M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 1.7787

	-	_		-	
Notes	for	()ıı	estion	-	Continued
110000	101	∨u	Cotton	-	Continueu

3. (c)

B1: For a correct statement of $\pi \int \left(\sec\left(\frac{x}{2}\right)\right)^2$ or $\pi \int \sec^2\left(\frac{x}{2}\right)$ or $\pi \int \frac{1}{\left(\cos\left(\frac{x}{2}\right)\right)^2} \left\{dx\right\}$.

Ignore limits and dx. Can be implied.

Note: Unless a correct expression stated $\pi \int \sec\left(\frac{x^2}{4}\right)$ would be B0.

M1: $\pm \lambda \tan \left(\frac{x}{2}\right)$ from any working.

A1: $2\tan\left(\frac{x}{2}\right)$ or $\frac{1}{\left(\frac{1}{2}\right)}\tan\left(\frac{x}{2}\right)$ from any working.

A1: 2π from a correct solution only.

Note: The π in the volume formula is only required for the B1 mark and the final A1 mark.

Note: Decimal answer of 6.283... without correct exact answer is A0.

Note: The B1 mark can be implied by later working – as long as it is clear that the candidate has applied $\pi \int y^2$ in their working.

Note: Writing the correct formula of $V = \pi \int y^2 \{dx\}$, but incorrectly applying it is B0.

Question Number	Scheme	Marks
5. (a)	$\left\{x = u^2 \Rightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u \text{or} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$	B1
	$\left\{ \int \frac{1}{x(2\sqrt{x} - 1)} \mathrm{d}x \right\} = \int \frac{1}{u^2(2u - 1)} 2u \mathrm{d}u$	M1
	$=\int \frac{2}{u(2u-1)}\mathrm{d}u$	A1 * cso
(b)	2 4 8	[3]
(b)	$\frac{2}{u(2u-1)} \equiv \frac{A}{u} + \frac{B}{(2u-1)} \Rightarrow 2 \equiv A(2u-1) + Bu$ $u = 0 \Rightarrow 2 = -A \Rightarrow A = -2$ $u = \frac{1}{2} \Rightarrow 2 = \frac{1}{2}B \Rightarrow B = 4$ See notes	M1 A1
	So $\int \frac{2}{u(2u-1)} du = \int \frac{-2}{u} + \frac{4}{(2u-1)} du$ Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ to obtain any one of $\pm \lambda \ln u$ or $\pm \mu \ln(2u-1)$	M1
	$= -2 \ln u + 2 \ln(2u - 1)$ At least one term correctly followed through $-2 \ln u + 2 \ln(2u - 1).$	A1 ft A1 cao
	So, $[-2 \ln u + 2 \ln(2u - 1)]_1^3$	
	Applies limits of 3 and 1 in u or 9 and 1 in x in their integrated function and subtracts the correct way round. $= -2 \ln 3 + 2 \ln 5 - (0)$	M1
	$=2\ln\left(\frac{5}{3}\right)$ $2\ln\left(\frac{5}{3}\right)$	Al cso cao
		[7] 10

	Notes for Question 5							
(a)	B1: $\frac{dx}{du} = 2u$ or $dx = 2u du$ or $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ or $du = \frac{dx}{2\sqrt{x}}$							
	M1: A full substitution producing an integral in u only (including the du) (Integral sign not necessary).							
	The candidate needs to deal with the "x", the " $(2\sqrt{x}-1)$ " and the "dx" and converts from an							
	integral term in x to an integral in u . (Remember the integral sign is not necessary for M1).							
(1)	A1*: leading to the result printed on the question paper (including the du). (Integral sign is needed).							
(b)	2 4 B 1 B 0							
	M1: Writing $\frac{2}{u(2u-1)} \equiv \frac{A}{u} + \frac{B}{(2u-1)}$ or writing $\frac{1}{u(2u-1)} \equiv \frac{P}{u} + \frac{Q}{(2u-1)}$ and a complete method for							
	finding the value of at least one of their A or their B (or their P or their Q).							
	A1: Both their $A = -2$ and their $B = 4$. (Or their $P = -1$ and their $Q = 2$ with the multiplying factor of							
	2 in front of the integral sign).							
	M1: Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ (i.e. <i>a two term partial fraction</i>) to obtain any one of							
	$\pm \lambda \ln u$ or $\pm \mu \ln(2u - 1)$ or $\pm \mu \ln\left(u - \frac{1}{2}\right)$							
	A1ft: At least one term correctly followed through from their A or from their B (or their P and their Q).							
	A1: $-2\ln u + 2\ln(2u - 1)$							
	Notes for Question 5 Continued							
5. (b) ctd	M1: Applies limits of 3 and 1 in u or 9 and 1 in x in their (i.e. any) changed function and subtracts the							
	correct way round.							
	Note: If a candidate just writes $(-2 \ln 3 + 2 \ln(2(3) - 1))$ oe, this is ok for M1.							
	A1: $2\ln\left(\frac{5}{3}\right)$ correct answer only. (Note: $a = 5, b = 3$).							
	Important note: Award M0A0M1A1A0 for a candidate who writes							
	$\int \frac{2}{u(2u-1)} du = \int \frac{2}{u} + \frac{2}{(2u-1)} du = 2\ln u + \ln(2u-1)$							
	AS EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ AS PARTIAL FRACTIONS IS GIVEN.							
1	S 1 W 2 P 3 1 D 3							

Important note: Award M0A0M0A0A0 for a candidate who writes down either

Important note: Award M1A1M1A1A1 for a candidate who writes down

 $\int \frac{2}{u(2u-1)} \, \mathrm{d}u = -2 \ln u + 2 \ln(2u-1)$

M1A0 M1A1ftA0 M1A0.

Note: In part (b) if they lose the "2" and find $\int \frac{1}{u(2u-1)} du$ we can allow a maximum of

 $\int \frac{2}{u(2u-1)} du = 2\ln u + 2\ln(2u-1) \text{ or } \int \frac{2}{u(2u-1)} du = 2\ln u + \ln(2u-1)$

WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ as partial fractions.

WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ as partial fractions.

Question Number	Sci	heme			Marl	cs
6.	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda (120 - \theta), \theta \leqslant 100$					
(a)	$\int \frac{1}{120 - \theta} d\theta = \int \lambda dt \qquad \text{or } \int \frac{1}{\lambda (120 - \theta)} d\theta = \int dt$				В1	
	$-\ln(120-\theta)$; = $\lambda t + c$ or	$-\ln(120 - \theta)$; = $\lambda t + c$ or $-\frac{1}{\lambda}\ln(120 - \theta)$; = $t + c$ See notes				
	$\{t = 0, \theta = 20 \Rightarrow\} -\ln(120 - 20) =$	$=\lambda(0)+c$		See notes	M1	
	$c = -\ln 100 \Rightarrow -\ln (120 - \theta) = \lambda t$	- ln100				
	then either	or		T		
	then either $-\lambda t = \ln(120 - \theta) - \ln 100$	$\lambda t = \ln 100 - \ln (120)$	$-\theta$			
	$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln \left(\frac{100}{120 - \theta} \right)$				
	$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$			dddM1	
	$100e^{-\lambda t} = 120 - \theta$	$(120 - \theta)e^{\lambda t} = 100$ $\Rightarrow 120 - \theta = 100e^{-\lambda t}$	it			
	leading to $\theta = 120 - 120$				A1 *	
				1		[8]
(b)	$\{\lambda = 0.01, \theta = 100 \Rightarrow\}$ $100 = 120$	$-100e^{-0.01t}$			M1	
	$\Rightarrow 100e^{-0.01t} = 120 - 100 \Rightarrow -0.01$	$t = \ln\left(\frac{120 - 100}{100}\right)$		ect order of operations by m $100 = 120 - 100e^{-0.01t}$		
	$t = \frac{1}{-0.01} \ln \left(\frac{120 - 100}{100} \right)$		to g	give $t =$ and $t = A \ln B$, where $B > 0$	dM1	
	$\left\{ t = \frac{1}{-0.01} \ln \left(\frac{1}{5} \right) = 100 \ln 5 \right\}$					
	t = 160.94379 = 161 (s) (nearest	second)		awrt 161	A1	
						[3] 11

Notes for Question 6

(a) **B1:** Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.

M1:
$$\int \frac{1}{120 - \theta} d\theta \rightarrow \pm A \ln(120 - \theta) \qquad \int \frac{1}{\lambda(120 - \theta)} d\theta \rightarrow \pm A \ln(120 - \theta), \quad A \text{ is a constant.}$$

A1:
$$\int \frac{1}{120 - \theta} d\theta \rightarrow -\ln(120 - \theta)$$

$$\int \frac{1}{\lambda(120 - \theta)} d\theta \rightarrow -\frac{1}{\lambda}\ln(120 - \theta) \text{ or } -\frac{1}{\lambda}\ln(120\lambda - \lambda\theta),$$
M1:
$$\int \lambda dt \rightarrow \lambda t$$

$$\int 1 dt \rightarrow t$$

A1:
$$\int \lambda \, dt \to \lambda t + c$$
 or $\int 1 \, dt \to t + c$ The + c can appear on either side of the equation.

IMPORTANT: +c can be on either side of their equation for the 2^{nd} A1 mark.

M1: Substitutes t = 0 AND $\theta = 20$ in an integrated or changed equation containing c (or A or $\ln A$). **Note** that this mark can be implied by the correct value of c. { Note that $-\ln 100 = -4.60517...$ }.

dddM1: Uses their value of c which must be a ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded.

A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either:

(1):
$$e^{-\lambda t} = \frac{120 - \theta}{100} \implies 100e^{-\lambda t} = 120 - \theta \implies \theta = 120 - 100e^{-\lambda t}$$

or (2):
$$e^{\lambda t} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{\lambda t} = 100 \Rightarrow 120 - \theta = 100e^{-\lambda t} \Rightarrow \theta = 120 - 100e^{-\lambda t}$$

Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a).

M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting (b) This mark can be implied by subsequent working.

dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to t = ...

Note: that the 2nd Method mark is dependent on the 1st Method mark being awarded in part (b).

A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units).

Aliter 6. (a) Way 2

$\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t$	1
---	---

$$-\ln(120 - \theta) = \lambda t + c$$
See notes M1 A1;

$$-\ln(120 - \theta) = \lambda t + c$$

$$\ln(120 - \theta) = -\lambda t + c$$

$$120 - \theta = Ae^{-\lambda t}$$

$$\theta = 120 - Ae^{-\lambda t}$$

$$\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^0$$

$$A = 120 - 20 = 100$$

So,
$$\theta = 120 - 100e^{-\lambda t}$$

M1

dddM1 A1*

Notes for Question 6 Continued

(a) B1M1A1M1A1: Mark as in the original scheme.

M1: Substitutes t = 0 AND $\theta = 20$ in an integrated equation containing their constant of integration which could be c or A. **Note** that this mark can be implied by the correct value of c or A.

dddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation containing their evaluated constant of integration.

Note: This mark is dependent on all three previous method marks being awarded.

Note: $\ln(120 - \theta) = -\lambda t + c$ leading to $120 - \theta = e^{-\lambda t} + e^{c}$ or $120 - \theta = e^{-\lambda t} + A$, would be dddM0.

A1*: Same as the original scheme.

Note: The jump from $\ln(120 - \theta) = -\lambda t + c$ to $120 - \theta = Ae^{-\lambda t}$ with no incorrect working is condoned in part (a).

ļ		in part (a).				
	Aliter 6. (a) Way 3	$\int \frac{1}{120 - \theta} d\theta = \int \lambda dt \left\{ \Rightarrow \int \frac{-1}{\theta - 120} d\theta = \int \lambda dt \right\}$		В1		
		$-\ln \theta - 120 = \lambda t + c$		Modulus required for 1^{st} A1.	Ml A1 Ml Al	
		$\{t = 0, \theta = 20 \Rightarrow\} -\ln 20 - 120 = \lambda(0) + c$		Modulus not required here!	Ml	
		$\Rightarrow c = -\ln 100 \Rightarrow -\ln \theta - 120 = \lambda$	$dt - \ln 100$,		
		then either	or	,		
		$-\lambda t = \ln \left \theta - 120 \right - \ln 100$	$\lambda t = \ln 100 - \ln \left \theta - 120 \right $			
		$-\lambda t = \ln \left \frac{\theta - 120}{100} \right $	$\lambda t = \ln \left \frac{100}{\theta - 120} \right $			
		As θ ≤	100			
		$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln \left(\frac{100}{120 - \theta} \right)$	Understanding of modulus is required	dddM1	
		$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$	here!	uuuwii	
		$100\mathrm{e}^{-\lambda t} = 120 - \theta$	$(120 - \theta)e^{\lambda t} = 100$ $\Rightarrow 120 - \theta = 100e^{-\lambda t}$		A1 *	
		leading to $\theta = 120 - 100 e^{-\lambda t}$			711	
				•		[8]

B1: Mark as in the original scheme.

M1: Mark as in the original scheme ignoring the modulus.

A1:
$$\int \frac{1}{120-\theta} d\theta \rightarrow -\ln|\theta - 120|$$
. (The modulus is required here).

M1A1: Mark as in the original scheme.

M1: Substitutes t = 0 AND $\theta = 20$ in an integrated equation containing their constant of integration which could be c or A. Mark as in the original scheme ignoring the modulus.

dddM1: Mark as in the original scheme **AND** the candidate must demonstrate that they have converted $\ln |\theta - 120|$ to $\ln (120 - \theta)$ in their working. **Note:** This mark is dependent on all three previous method marks being awarded.

A1: Mark as in the original scheme.

Notes for Question 6 Continued			
Aliter 6. (a)	Use of an integrating factor		
Way 4	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda (120 - \theta) \Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}t} + \lambda \theta = 120\lambda$		
	$IF = e^{\lambda t}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{\lambda t}\theta)=120\lambda\mathrm{e}^{\lambda t},$	M1A1	
	$e^{\lambda t}\theta = 120\lambda e^{\lambda t} + k$	M1A1	
	$\theta = 120 + Ke^{-\lambda t}$	M1	
	$\begin{cases} t = 0, \ \theta = 20 \implies \\ -100 = K \end{cases}$ $\theta = 120 - 100e^{-\lambda t}$		
	$\theta = 120 - 100e^{-\lambda t}$	M1A1	

Jan 2013 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme		
2. (a)	$\int \frac{1}{x^3} \ln x dx, \qquad \begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-3} & \Rightarrow v = \frac{x^{-2}}{-2} = \frac{-1}{2x^2} \end{cases}$		
	In the form $\frac{\pm \lambda}{x^2} \ln x \pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x}$	M1	
	$= \frac{-1}{2x^2} \ln x - \int \frac{-1}{2x^2} \cdot \frac{1}{x} dx$ $\frac{-1}{2x^2} \ln x \text{ simplified or un-simplified.}$	<u>A1</u>	
	$-\int \frac{-1}{2x^2} \cdot \frac{1}{x}$ simplified or un-simplified.	<u>A1</u>	
	$\left\{ = \frac{-1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} dx \right\}$		
	$= -\frac{1}{2x^2} \ln x + \frac{1}{2} \left(-\frac{1}{2x^2} \right) \{ + c \}$ $\pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x} \to \pm \beta x^{-2}.$	dM1	
	Correct answer, with/without $+ c$	A1	[5]
(b)	$\left\{ \left[-\frac{1}{2x^2} \ln x - \frac{1}{4x^2} \right]_1^2 \right\} = \left(-\frac{1}{2(2)^2} \ln 2 - \frac{1}{4(2)^2} \right) - \left(-\frac{1}{2(1)^2} \ln 1 - \frac{1}{4(1)^2} \right)$ Applies limits of 2 and 1 to their part (a) answer and subtracts the correct way round.	M1	[2]
	$= \frac{3}{16} - \frac{1}{8} \ln 2 \text{or} \frac{3}{16} - \ln 2^{\frac{1}{8}} \text{or} \frac{1}{16} (3 - 2 \ln 2), \text{ etc, or awrt } 0.1$ or equivalent.	A1	
			[2] 7

(a) M1: Integration by parts is applied in the form
$$\frac{\pm \lambda}{x^2} \ln x \pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x}$$
 or equivalent.

A1:
$$\frac{-1}{2x^2} \ln x$$
 simplified or un-simplified.

$$\underline{\underline{\mathbf{A1}}}$$
: $-\int \frac{-1}{2x^2} \cdot \frac{1}{x}$ or equivalent. You can ignore the dx.

dM1: Depends on the previous M1.
$$\pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x} \rightarrow \pm \beta x^{-2}$$
.

A1:
$$-\frac{1}{2x^2}\ln x + \frac{1}{2}\left(-\frac{1}{2x^2}\right)\{+c\}$$
 or $= -\frac{1}{2x^2}\ln x - \frac{1}{4x^2}\{+c\}$ or $\frac{x^{-2}}{-2}\ln x - \frac{x^{-2}}{4}\{+c\}$ or $\frac{-1 - 2\ln x}{4x^2}\{+c\}$ or equivalent.

You can ignore subsequent working after a correct stated answer.

A1: Two term exact answer of either
$$\frac{3}{16} - \frac{1}{8} \ln 2$$
 or $\frac{3}{16} - \ln 2^{\frac{1}{8}}$ or $\frac{1}{16} (3 - 2 \ln 2)$ or $\frac{\ln(\frac{1}{4}) + 3}{16}$ or $0.1875 - 0.125 \ln 2$. Also allow awrt 0.1. Also note the fraction terms must be combined.

Note: Award the final A0 in part (b) for a candidate who achieves awrt 0.1 in part (b), when their answer to part (a) is incorrect.

Special Case (b) M1A1: for a candidate who finds an answer in (a) which is out by a factor of -1.

Award SC M1A1 for
$$\frac{1}{2x^2} \ln x + \frac{1}{2} \left(\frac{1}{2x^2} \right) \{ + c \}$$
 in (a) leading to $-\frac{3}{16} + \frac{1}{8} \ln 2$, etc or awrt -0.1 in (b).

$$\int \frac{1}{x^3} \ln x \, dx, \qquad \begin{cases} u = x^{-3} & \Rightarrow \frac{du}{dx} = -3x^{-4} \\ \frac{dv}{dx} = \ln x & \Rightarrow v = x \ln x - x \end{cases}$$

$$\int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int (x \ln x - x) \frac{-3}{x^4} dx$$
$$-2 \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^3} dx$$

$$-2\int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) - \int \frac{3}{x^3} dx$$

$$-2\int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) + \frac{3}{2x^2} \left\{ + c \right\}$$

$$-2\int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) + \frac{3}{2x^2} \left\{ + c \right\}$$

$$\int \frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^3} (x \ln x - x) - \frac{3}{4x^2} \left\{ + c \right\}$$

$$= -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} \left\{ + c \right\}$$

$$k \int \frac{1}{x^3} \ln x \, dx = \frac{1}{x^3} (x \ln x - x) \pm \int \frac{\lambda}{x^3} dx$$
where $k \neq 1$

Any one of
$$\frac{1}{x^3}(x \ln x - x)$$
 or $-\int \frac{3}{x^3} dx$ A1

$$\frac{1}{x^3}(x\ln x - x) - \int \frac{3}{x^3} dx \quad \text{and } k = -2 \quad \text{A1}$$

$$\pm \int \mu \, \frac{1}{x^3} \, \to \pm \, \beta x^{-2}. \quad dM$$

$$-\frac{1}{2x^3}(x \ln x - x) - \frac{3}{4x^2} \text{ or equivalent with/without } + c.$$

Question	Scheme	Mark	cs
Number 4. (a)	1.0981	B1 cao	
4. (a)	1.0761	Di cao	[1]
(b)	Area $\approx \frac{1}{2} \times 1$; $\times \left[0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333 \right]$	B1; <u>M1</u>	
	$= \frac{1}{2} \times 5.6863 = 2.84315 = 2.843 \text{ (3 dp)}$ 2.843 or awrt 2.843	A1	
			[3]
(c)	$\left\{u = 1 + \sqrt{x}\right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = 2(u-1)$	<u>B1</u>	
	$\left\{ \int \frac{x}{1+\sqrt{x}} dx = \right\} \int \frac{(u-1)^2}{u} \cdot 2(u-1) du$	M1	
	$\int \frac{1-\sqrt{x}}{1+\sqrt{x}} dx = \int \frac{1-1}{u} du$ $\int \frac{(u-1)^2}{u} \cdot 2(u-1) du$	A1	
	$= 2 \int \frac{(u-1)^3}{u} du = \{2\} \int \frac{(u^3 - 3u^2 + 3u - 1)}{u} du$ Expands to give a "four term" cubic in u. Eg: $\pm Au^3 \pm Bu^2 \pm Cu \pm D$	M1	
	$= \{2\} \int \left(u^2 - 3u + 3 - \frac{1}{u}\right) du$ An attempt to divide at least three terms in their cubic by u . See notes.	M1	
	$ = \{2\} \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u \right) $ $ \int \frac{(u-1)^3}{u} \to \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u \right) $	A1	
	Area(R) = $\left[\frac{2u^3}{3} - 3u^2 + 6u - 2\ln u\right]_2^3$		
	$= \left(\frac{2(3)^3}{3} - 3(3)^2 + 6(3) - 2\ln 3\right) - \left(\frac{2(2)^3}{3} - 3(2)^2 + 6(2) - 2\ln 2\right)$ Applies limits of 3 and 2 in u or 4 and 1 in x and subtracts either way round.	M1	
	$= \frac{11}{3} + 2\ln 2 - 2\ln 3 \text{or} \frac{11}{3} + 2\ln\left(\frac{2}{3}\right) \text{ or} \frac{11}{3} - \ln\left(\frac{9}{4}\right), \text{ etc} $ Correct exact answer or equivalent.	A1	
			[8] 12
(a)	B1: 1.0981 correct answer only. Look for this on the table or in the candidate's working.	1	
(b)	B1 : Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$		
	M1: For structure of trapezium rule [
	A1: anything that rounds to 2.843		
	Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is 2.85573645		

Area
$$\approx 1 \times \left[\frac{0.5 + 0.8284}{2} + \frac{0.8284 + 1.0981}{2} + \frac{1.0981 + 1.3333}{2} \right] = 2.84315$$

B1: 1 and a divisor of 2 on all terms inside brackets.

M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.

A1: anything that rounds to 2.843

B1:
$$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$$
 or $du = \frac{1}{2\sqrt{x}} dx$ or $2\sqrt{x} du = dx$ or $dx = 2(u-1)du$ or $\frac{dx}{du} = 2(u-1)$ oe.

1st M1:
$$\frac{x}{1+\sqrt{x}}$$
 becoming $\frac{(u-1)^2}{u}$ (Ignore integral sign).

1st A1:
$$\frac{x}{1+\sqrt{x}} dx$$
 becoming $\frac{(u-1)^2}{u}$. $2(u-1)\{du\}$ or $\frac{(u-1)^2}{u}$. $\frac{2}{(u-1)^{-1}}\{du\}$.

You can ignore the integral sign and the du.

2nd M1: Expands to give a "four term" cubic in
$$u$$
, $\pm Au^3 \pm Bu^2 \pm Cu \pm D$

where $A \neq 0$, $B \neq 0$, $C \neq 0$ and $D \neq 0$ The cubic does not need to be simplified for this mark

$$3^{rd}$$
 M1: An attempt to divide at least three terms in *their cubic* by u .

Ie.
$$\frac{(u^3 - 3u^2 + 3u - 1)}{u} \rightarrow u^2 - 3u + 3 - \frac{1}{u}$$

2nd A1:
$$\int \frac{(u-1)^3}{u} du \rightarrow \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right)$$

4th M1: Some evidence of limits of 3 and 2 in u and subtracting either way round.

Note:
$$\left(\frac{4^3}{3} - \frac{3(4)^2}{2} + 3(4) - \ln 4\right) - \left(\frac{1^3}{3} - \frac{3(1)^2}{2} + 3(1) - \ln 1\right)$$
 is M0.

You will need to use your calculator to check for correct substitution of their limits into their integrand if a candidate does explicitly give **some evidence**.

Note: For correct integral and limits decimals gives: (6.802775...) - (3.947038...) = 2.85573...

3rd A1: Exact answer of
$$\frac{11}{3} + 2\ln 2 - 2\ln 3$$
 or $\frac{11}{3} + 2\ln \left(\frac{2}{3}\right)$ or $\frac{11}{3} - \ln \left(\frac{9}{4}\right)$ or $2\left(\frac{11}{6} + \ln 2 - \ln 3\right)$

or $\frac{22}{6} + 2\ln\left(\frac{2}{3}\right)$, etc. **Note**: that fractions must be combined to give either $\frac{11}{3}$ or $\frac{22}{6}$ or $3\frac{2}{3}$

Alternative method for 2nd MI and 3rd MI mark

$$\{2\} \int \frac{(u-1)^2}{u} \cdot (u-1) \, du = \{2\} \int \frac{(u^2 - 2u + 1)}{u} \cdot (u-1) \, du$$

$$= \{2\} \int \left(u - 2 + \frac{1}{u}\right) \cdot (u - 1) du = \{2\} \int \left(u^2 - ...\right) du$$

$$= \{2\} \int \left(u^2 - 2u + 1 - u + 2 - \frac{1}{u}\right) du$$

$$= \{2\} \int \left(u^2 - 3u + 3 - \frac{1}{u}\right) du$$

An attempt to expand
$$(u-1)^2$$
, then divide the result by u and then go on to multiply by $(u-1)$.

$$\pm Au^2$$
, $\pm Bu$, $\pm C$ or $\pm \frac{D}{u}$

Final two marks in part (c): $u = 1 + \sqrt{x}$

Area(R) =
$$\left[\frac{2(1+\sqrt{x})^3}{3} - 3(1+\sqrt{x})^2 + 6(1+\sqrt{x}) - 2\ln(1+\sqrt{x}) \right]_1^4$$
=
$$\left[\frac{2(1+\sqrt{4})^3}{3} - 3(1+\sqrt{4})^2 + 6(1+\sqrt{4}) - 2\ln(1+\sqrt{4}) \right]_1^4$$
-
$$\left[\frac{2(1+\sqrt{1})^3}{3} - 3(1+\sqrt{1})^2 + 6(1+\sqrt{1}) - 2\ln(1+\sqrt{1}) \right]_1^4$$
=
$$(18 - 27 + 18 - 2\ln 3) - \left(\frac{16}{3} - 12 + 12 - 2\ln 2 \right)$$
=
$$\frac{11}{3} + 2\ln 2 - 2\ln 3$$
 or
$$\frac{11}{3} + 2\ln\left(\frac{2}{3}\right)$$
 or
$$\frac{11}{3} - \ln\left(\frac{9}{4}\right),$$
 etc

M1: Applies limits of 4 and 1 in *x* and subtracts either way round.

A1: Correct exact answer or equivalent.

Alternative method for the final 5 marks in part (b)

Area(R) = $2\int_{3}^{3} \frac{(u-1)^{3}}{u} du = 2\left(\frac{11}{6} + \ln\frac{2}{3}\right)$

Alternative method for the final S marks in part (b)
$$\int \frac{(u-1)^3}{u} du, \quad \begin{cases} u'' = u^{-1} & \Rightarrow \frac{d''u''}{dx} = -u^{-2} \\ \frac{dv}{dx} = (u-1)^3 & \Rightarrow v = \frac{(u-1)^4}{4} \end{cases}$$

$$= \frac{(u-1)^4}{4u} - \frac{1}{4} \int \frac{(u-1)^4}{u^2} du$$

$$= \frac{(u-1)^4}{4u} + \frac{1}{4} \int u^4 - 4u^3 + 6u^2 - 4u + 1 du$$

$$= \frac{(u-1)^4}{4u} + \frac{1}{4} \int u^2 - 4u + 6 - \frac{4}{u} + \frac{1}{u^2} du$$
M1: Applies integration by parts and expands to give a five term quartic.

$$= \frac{(u-1)^4}{4u} + \frac{1}{4} \left(\frac{u^3}{3} - 2u^2 + 6u - 4 \ln u - \frac{1}{u} \right)$$
A1: Correct Integration.

$$\int_{2}^{3} \frac{(u-1)^3}{u} du = \left[\frac{(u-1)^4}{4u} + \frac{u^3}{12} - \frac{u^2}{2} + \frac{3u}{2} - \ln u - \frac{1}{4u} \right]_{2}^{3}$$

$$= \left(\frac{16}{12} + \frac{27}{12} - \frac{9}{2} + \frac{9}{2} - \ln 3 - \frac{1}{12} \right) - \left(\frac{1}{8} + \frac{8}{12} - \frac{4}{2} + \frac{6}{2} - \ln 2 - \frac{1}{8} \right)$$
M1
$$= (7 - \ln 3) - \left(\frac{5}{3} - \ln 2 \right)$$

$$= \frac{11}{6} + \ln \frac{2}{3}$$

A1

Question

Number

Scheme

6. (a)	${y=0 \Rightarrow} 1-2\cos x = 0$ $1-2\cos x = 0$, seen or implied.	M1	
	At least one correct value of x. (See notes).	A1	
	$\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$ Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$	A1 cso	
	3 3		[3]
(b)	$V = \pi \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos x)^2 dx$ For $\pi \int (1 - 2\cos x)^2$.	B1	
(0)	Ignore limits and dx	ы	
	$\left\{ \int (1 - 2\cos x)^2 dx \right\} = \int (1 - 4\cos x + 4\cos^2 x) dx$		
	$= \int 1 - 4\cos x + 4\left(\frac{1 + \cos 2x}{2}\right) dx$ $\cos 2x = 2\cos^2 x - 1$ See notes.	M1	
	$= \int (3 - 4\cos x + 2\cos 2x) \mathrm{d}x$		
	Attempts $\int y^2$ to give any two of		
	$= 3x - 4\sin x + \frac{2\sin 2x}{2} \qquad \pm A \rightarrow \pm Ax, \pm B\cos x \rightarrow \pm B\sin x \text{ or}$	M1	
	2	A1	
	$V = \left\{\pi\right\} \left[\left(3\left(\frac{5\pi}{3}\right) - 4\sin\left(\frac{5\pi}{3}\right) + \frac{2\sin\left(\frac{10\pi}{3}\right)}{2}\right) - \left(3\left(\frac{\pi}{3}\right) - 4\sin\left(\frac{\pi}{3}\right) + \frac{2\sin\left(\frac{2\pi}{3}\right)}{2}\right) \right] $ Applying limits the correct way round. Ignore π .	ddM1	
	$= \pi \left(\left(5\pi + 2\sqrt{3} - \frac{\sqrt{3}}{2} \right) - \left(\pi - 2\sqrt{3} + \frac{\sqrt{3}}{2} \right) \right)$		
	$=\pi((18.3060)-(0.5435))=17.7625\pi=55.80$		
	$=\pi(4\pi+3\sqrt{3})$ or $4\pi^2+3\pi\sqrt{3}$ Two term exact answer.	A1	
			[6] 9
6. (a)	M1: $1-2\cos x = 0$.	•	
	This can be implied by either $\cos x = \frac{1}{2}$ or any one of the correct values for x in radians or in	degrees.	
	1 st A1: Any one of either $\frac{\pi}{3}$ or $\frac{5\pi}{3}$ or 60 or 300 or awrt 1.05 or 5.23 or awrt 5.24.		
	2nd A1: Both $\frac{\pi}{3}$ and $\frac{5\pi}{3}$.		
(b)	Note: This part appears as M1 M1 M1 A1 M1 A1 on ePEN, but is now marked as B1 M1 M1 A1	M1 A1.	
	B1: For $\pi \int (1-2\cos x)^2$. Ignore limits and dx.		
	1 st M1: Any correct form of $\cos 2x = 2\cos^2 x - 1$ used or written down in the same variable.		
	This can be implied by $\cos^2 x = \frac{1 + \cos 2x}{2}$ or $4\cos^2 x \rightarrow 2 + 2\cos 2x$ or $\cos 2A = 2\cos^2 A - 1$.		
	2nd M1: Attempts $\int y^2$ to give any two of $\pm A \to \pm Ax$, $\pm B \cos x \to \pm B \sin x$ or $\pm \lambda \cos 2x \to \pm \mu \sin 2x$.		
	Do not worry about the signs when integrating $\cos x$ or $\cos 2x$ for this mark.		
	Note: $\int (1 - 2\cos x)^2 = \int 1 + 4\cos^2 x$ is ok for an attempt at $\int y^2$.		- 1

Marks

1st A1: Correct integration. Eg. $3x - 4\sin x + \frac{2\sin 2x}{2}$ or $x - 4\sin x + \frac{2\sin 2x}{2} + 2x$ oe.

 3^{rd} **ddM1:** Depends on both of the two previous method marks. (Ignore π).

Some evidence of substituting their $x = \frac{5\pi}{3}$ and their $x = \frac{\pi}{3}$ and subtracting the correct way round.

You will need to use your calculator to check for correct substitution of their limits into their integrand if a candidate does not explicitly give **some evidence**.

Note: For correct integral and limits decimals gives: $\pi((18.3060...) - (0.5435...)) = 17.7625\pi = 55.80$

2nd A1: Two term exact answer of either $\pi(4\pi + 3\sqrt{3})$ or $4\pi^2 + 3\pi\sqrt{3}$ or equivalent.

Note: The π in the volume formula is only required for the B1 mark and the final A1 mark.

Note: Decimal answer of 58.802... without correct exact answer is A0.

Note: Applying $\int (1 - 2\cos x) dx$ will usually be given no marks in this part.

Question Number	Scheme		Mark	S
	$\left\{ \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{(3-\theta)}{125} \right\} \Rightarrow \int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{125} \mathrm{d}t \text{or } \int \frac{125}{3-\theta} \mathrm{d}\theta = \int \mathrm{d}t$		В1	
	$-\ln(\theta - 3) = \frac{1}{125}t \ \{+c\} \ \text{or} \ -\ln(3 - \theta) = \frac{1}{125}t \ \{-c\}$	c See notes.	M1 A1	
	$\ln(\theta - 3) = -\frac{1}{125}t + c$			
	$\theta - 3 = e^{-\frac{1}{125}t^{+c}} \text{ or } e^{-\frac{1}{125}t}e^{c}$	Correct completion		
	$\theta - 3 = e^{-125}$ or $e^{-125} e^{c}$	to $\theta = Ae^{-0.008t} + 3$.	A 1	
	$\theta = Ae^{-0.008t} + 3 *$		AI	
				[4]
(b)	$\theta = Ae^{-0.008t} + 3 *$ $\{t = 0, \theta = 16 \Rightarrow\} 16 = Ae^{-0.008(0)} + 3; \Rightarrow \underline{A = 13}$	See notes.	M1; A1	
		Substitutes $\theta = 10$ into an equation		
	$10 = 13e^{-0.008t} + 3$	of the form $\theta = Ae^{-0.008t} + 3$,	M1	
		or equivalent. See notes.		
	-0.0084 7 (7)	Correct algebra to $-0.008t = \ln k$,		
	$e^{-0.008t} = \frac{7}{13} \implies -0.008t = \ln\left(\frac{7}{13}\right)$	here k is a positive value. See <i>notes</i> .	M1	
	((-))	acte a sa a positive value. See notes.		
	$\ln \left \frac{r}{13} \right $			
	$\left\{ t = \frac{\ln\left(\frac{7}{13}\right)}{(-0.008)} \right\} = 77.3799 = 77 \text{ (nearest minute)}$	awrt 77	A1	
	(-0.000)			
	,			[5]
				9
<u> </u>			1	_

Note: This part appears as M1 M1 A1 A1 on ePEN, but is now marked as B1 M1 A1 A1. 8. (a)

> B1: Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.

M1: Both $\pm \lambda \ln(3-\theta)$ or $\pm \lambda \ln(\theta-3)$ and $\pm \mu t$ where λ and μ are constants.

A1: For $-\ln(\theta - 3) = \frac{1}{125}t$ or $-\ln(3 - \theta) = \frac{1}{125}t$ or $-125\ln(\theta - 3) = t$ or $-125\ln(3 - \theta) = t$

Note: +c is not needed for this mark.

A1: Correct completion to $\theta = Ae^{-0.008t} + 3$. **Note:** +c is needed for this mark.

Note: $\ln(\theta - 3) = -\frac{1}{125}t + c$ leading to $\theta - 3 = e^{-\frac{1}{125}t} + e^{c}$ or $\theta - 3 = e^{-\frac{1}{125}t} + A$, would be final A0.

Note: From $-\ln(\theta - 3) = \frac{1}{125}t + c$, then $\ln(\theta - 3) = -\frac{1}{125}t + c$

 $\Rightarrow \theta - 3 = e^{-\frac{1}{125}t^{-c}}$ or $\theta - 3 = e^{-\frac{1}{125}t}e^{-c} \Rightarrow \theta = Ae^{-0.008t} + 3$ is required for A1.

Note: From $-\ln(3-\theta) = \frac{1}{125}t + c$, then $\ln(3-\theta) = -\frac{1}{125}t + c$

 $\Rightarrow 3 - \theta = e^{-\frac{1}{125}t^{+c}} \text{ or } 3 - \theta = e^{-\frac{1}{125}t^{-1}}e^{c} \Rightarrow \theta = Ae^{-0.008t} + 3 \text{ is sufficient for A1.}$

Note: The jump from $3 - \theta = Ae^{-\frac{1}{125}t}$ to $\theta = Ae^{-0.008t} + 3$ is fine.

- Note: $\ln(\theta 3) = -\frac{1}{125}t + c \implies \theta 3 = Ae^{-\frac{1}{125}t}$, where candidate writes $A = e^c$ is also acceptable.
- Note: This part appears as B1 M1 M1 M1 A1 on ePEN, 8. (b) but is now marked as M1 A1 M1 M1 A1.

Note: You can recover work for part (b) in part (a).

M1: Substitutes $\theta = 16$, t = 0, into either their equation containing an unknown constant or the printed equation. Note: You can imply this method mark.

A1: A = 13. Note: $\theta = 13e^{-0.008t} + 3$ without any working implies the first two marks, M1A1.

M1: Substitutes $\theta = 10$ into an equation of the form $\theta = Ae^{-0.008t} + 3$, or equivalent. where A is a positive or negative numerical value and A can be equal to 1 or -1.

M1: Uses correct algebra to rearrange their equation into the form $-0.008t = \ln k$,

where k is a positive numerical value.

A1: awrt 77 or awrt 1 hour 17 minutes.

Alternative Method 1 for part (b)

$$\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln(\theta - 3) = \frac{1}{125}t + c$$

 $\{t = 0, \theta = 16 \Rightarrow\} \begin{cases} -\ln(16 - 3) = \frac{1}{125}(0) + c \\ \Rightarrow c = -\ln 13 \end{cases}$ MI: Substitutes $t = 0, \theta = 1$ into $-\ln(\theta - 3) = \frac{1}{125}t + c$

M1: Substitutes $t = 0, \theta = 16$

$$-\ln(\theta - 3) = \frac{1}{125}t - \ln 13$$
 or $\ln(\theta - 3) = -\frac{1}{125}t + \ln 13$

M1: Substitutes $\theta = 10$ into an equation of the

form
$$\pm \lambda \ln(\theta - 3) = \pm \frac{1}{125}t \pm \mu$$

where λ , μ are numerical values.

M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008t = \ln C - \ln D$, where C, D are positive numerical values.

A1: awrt 77.

- $-\ln(10-3) = \frac{1}{125}t \ln 13$
- $\ln 13 \ln 7 = \frac{1}{125}t$

= 77.3799... = 77 (nearest minute)

Alternative Method 2 for part (b

$$\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln|3-\theta| = \frac{1}{125}t + c$$

$$\begin{cases} t = 0 , \theta = 16 \Rightarrow \end{cases} -\ln|3 - 16| = \frac{1}{125}(0) + c \\ \Rightarrow c = -\ln 13 \end{cases}$$

$$= \ln|3 - \theta| = \frac{1}{125}t - \ln 13 \text{ or } \ln|3 - \theta| = -\frac{1}{125}t + \ln 13$$

$$\text{M1: Substitutes } t = 0, \theta = 16$$

$$\text{into-}\ln(3 - \theta) = \frac{1}{125}t + c$$

$$\text{A1: } c = -\ln 13$$

$$\text{M1: Substitutes } \theta = 10 \text{ into}$$

$$\text{M1: Substitutes } \theta = 10 \text{ into}$$

M1: Substitutes
$$t = 0, \theta = 16$$
,

$$into - \ln(3 - \theta) = \frac{1}{125}t + c$$

A1:
$$c = -\ln 13$$

$$-\ln|3-\theta| = \frac{1}{125}t - \ln 13$$
 or $\ln|3-\theta| = -\frac{1}{125}t + \ln 13$

M1: Substitutes $\theta = 10$ into an equation of the

form
$$\pm \lambda \ln(3 - \theta) = \pm \frac{1}{125}t \pm \mu$$

where λ , μ are numerical values.

$$\ln 13 - \ln 7 = \frac{1}{125}t$$

M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008t = \ln C - \ln D$, where C , D are positive numerical values.

A1: awrt 77.

8. (b) Alternative Method 3 for part (b)

$$\int_{16}^{10} \frac{1}{3-\theta} d\theta = \int_{0}^{t} \frac{1}{125} dt$$

 $-\ln(3-10) = \frac{1}{125}t - \ln 13$

$$= \left[-\ln|3 - \theta| \right]_{16}^{10} = \left[\frac{1}{125}t \right]_{0}^{t}$$

$$-\ln 7 - -\ln 13 = \frac{1}{125}t$$

$$t = 77.3799... = 77$$
 (nearest minute)

t = 77.3799... = 77 (nearest minute)

M1A1: ln13

M1: Substitutes limit of $\theta = 10$ correctly.

M1: Uses correct algebra to rearrange their own equation into the form $\pm 0.008t = \ln C - \ln D$, where C, D are positive numerical values.

A1: awrt 77.

Please escalate responses to review for candidates achieving 77 where you are not convinced of the method or if 77 is achieved and there are errors in working.

Question Number	Scheme	Marks
1.	(a) $1 = A(3x-1)^{2} + Bx(3x-1) + Cx$ $x \to 0 \qquad (1 = A)$ $x \to \frac{1}{3} \qquad 1 = \frac{1}{3}C \implies C = 3 \qquad \text{any two constants correct}$	B1 M1
		A1
	Coefficients of x^2 $0 = 9A + 3B \implies B = -3$ all three constants correct	A1 (4)
	(b)(i) $ \int \left(\frac{1}{x} - \frac{3}{3x - 1} + \frac{3}{(3x - 1)^2} \right) dx $	
	$= \ln x - \frac{3}{3} \ln (3x - 1) + \frac{3}{(-1)3} (3x - 1)^{-1} (+C)$	M1 A1ft A1ft
	$\left(=\ln x - \ln\left(3x - 1\right) - \frac{1}{3x - 1} (+C)\right)$	
	(ii) $\int_{1}^{2} f(x) dx = \left[\ln x - \ln (3x - 1) - \frac{1}{3x - 1} \right]_{1}^{2}$	
	$= \left(\ln 2 - \ln 5 - \frac{1}{5}\right) - \left(\ln 1 - \ln 2 - \frac{1}{2}\right)$	M1
	$= \ln \frac{2 \times 2}{5} + \dots$	M1
	$=\frac{3}{10}+\ln\left(\frac{4}{5}\right)$	A1 (6)
		[10]

Question Number	Scheme	Marks
4.	$\int y dy = \int \frac{3}{\cos^2 x} dx$ Can be implied. Ignore integral signs $= \int 3 \sec^2 x dx$	B1
	$\frac{1}{2}y^2 = 3\tan x (+C)$ $y = 2, x = \frac{\pi}{2}$	M1 A1
	$y = 2, x = \frac{\pi}{4}$ $\frac{1}{2}2^2 = 3\tan\frac{\pi}{4} + C$ Leading to $C = -1$	M1
	$\frac{1}{2}y^2 = 3\tan x - 1$ or equivalent	A1 (5) [5]

Question Number	Scheme				Mark	s			
7.	(a)	x y	1 ln2	$\frac{2}{\sqrt{2} \ln 4}$	$\frac{3}{\sqrt{3}\ln 6}$	4 2ln8		M1	
			0.6931	1.9605	3.1034	4.1589			
		Area = $\frac{1}{2} \times 1$	()					B1	
		. `	`	9605+3.103	4)+4.1589)			M1	
		$\approx \frac{1}{2} \times 14$	4.97989 🔅	≈ 7.49		7.49	9 cao	A1	(4)
	(b)	$\int x^{\frac{1}{2}} \ln 2x \mathrm{d}x =$	$= \frac{2}{3}x^{\frac{3}{2}}\ln 2x - \frac{2}{3}x^{\frac{3}{2}$	000	х			M1 A1	
			5	$-\frac{4}{9}x^{\frac{3}{2}}$ (+C))			M1 A1	(4)

(c)
$$\left[\frac{2}{3}x^{\frac{3}{2}}\ln 2x - \frac{4}{9}x^{\frac{3}{2}}\right]_{1}^{4} = \left(\frac{2}{3}4^{\frac{3}{2}}\ln 8 - \frac{4}{9}4^{\frac{3}{2}}\right) - \left(\frac{2}{3}\ln 2 - \frac{4}{9}\right)$$

$$= (16\ln 2 - \dots) - \dots \qquad \text{Using or implying } \ln 2^{n} = n \ln 2$$

$$= \frac{46}{3}\ln 2 - \frac{28}{9}$$
A1 (3)
[11]

Jan 2012 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks
2. (a)	$\int x \sin 3x dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x \{dx\}$	M1 A1
	$= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x \left\{ + c \right\}$	A1
		[3]
(b)	$\int x^2 \cos 3x dx = \frac{1}{3} x^2 \sin 3x - \int \frac{2}{3} x \sin 3x \{dx\}$	M1 A1
	$= \frac{1}{3}x^2 \sin 3x - \frac{2}{3} \left(-\frac{1}{3}x \cos 3x + \frac{1}{9} \sin 3x \right) \ \{+c\}$	A1 isw
	$\left\{ = \frac{1}{3}x^2 \sin 3x + \frac{2}{9}x \cos 3x - \frac{2}{27}\sin 3x \right\} $ Ignore subsequent working	[3]
		6

M1: Use of 'integration by parts' formula uv - ∫vu' (whether stated or not stated) in the correct direction, where u = x → u' = 1 and v' = sin 3x → v = k cos 3x (seen or implied), where k is a positive or negative constant. (Allow k = 1).
This means that the candidate must achieve x(k cos 3x) - ∫(k cos 3x), where k is a consistent constant. If x² appears after the integral, this would imply that the candidate is applying integration by parts in the wrong direction, so M0.
A1: -1/3 x cos 3x - ∫ -1/3 cos 3x {dx}. Can be un-simplified. Ignore the {dx}.
A1: -1/3 x cos 3x + 1/9 sin 3x with/without + c. Can be un-simplified.
(b) M1: Use of 'integration by parts' formula uv - ∫vu' (whether stated or not stated) in the correct direction, where u = x² → u' = 2x or x and v' = cos 3x → v = λ sin 3x (seen or implied), where λ is a positive or negative constant. (Allow λ = 1).
This means that the candidate must achieve x²(λ sin 3x) - ∫ 2x(λ sin 3x), where u' = 2x or x²(λ sin 3x) - ∫ x(λ sin 3x), where u' = x.

If x^3 appears after the integral, this would imply that the candidate is applying integration by parts in the wrong direction, so M0.

A1: $\frac{1}{3}x^2\sin 3x - \int \frac{2}{3}x\sin 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.

A1: $\frac{1}{3}x^2 \sin 3x - \frac{2}{3} \left(-\frac{1}{3}x \cos 3x + \frac{1}{9} \sin 3x \right)$ with/without + c, can be un-simplified.

You can ignore subsequent working here.

Special Case: If the candidate scores the first two marks of M1A1 in part (b), then you can award the final A1 as a follow through for $\frac{1}{3}x^2\sin 3x - \frac{2}{3}$ (their follow through part(a) answer).

Question Number	Scheme		Marks
4.	Volume = $\pi \int_{0}^{2} \left(\sqrt{\left(\frac{2x}{3x^2 + 4}\right)} \right)^2 dx$	Use of $V = \underline{\pi \int y^2} dx$.	
	[] ()]	$\pm k \ln(3x^2+4)$	M1
	$= (\pi) \left[\frac{1}{3} \ln \left(3x^2 + 4 \right) \right]_0^2$	$\pm k \ln \left(3x^2 + 4\right)$ $\frac{1}{3} \ln \left(3x^2 + 4\right)$	A1
	$= (\pi) \left[\left(\frac{1}{3} \ln 16 \right) - \left(\frac{1}{3} \ln 4 \right) \right]$	Substitutes limits of 2 and 0 and subtracts the correct way round.	dM1
	So Volume = $\frac{1}{3}\pi \ln 4$	$\frac{1}{3}\pi \ln 4 \text{ or } \frac{2}{3}\pi \ln 2$	Al oe isw
			[5] 5

NOTE: π is required for the B1 mark and the final A1 mark. It is not required for the 3 intermediate marks.

B1: For applying $\pi \int y^2$. Ignore limits and dx. This can be implied by later working,

but the pi and $\int \frac{2x}{3x^2+4}$ must appear on one line somewhere in the candidate's working.

B1 can also be implied by a correct final answer. Note: $\pi(\int y)^2$ would be B0.

Working in x

M1: For $\pm k \ln(3x^2 + 4)$ or $\pm k \ln(x^2 + \frac{4}{3})$ where k is a constant and k can be 1.

Note: M0 for $\pm k x \ln(3x^2 + 4)$.

Note: M1 can also be given for $\pm k \ln(p(3x^2 + 4))$, where k and p are constants and k can be 1.

A1: For $\frac{1}{3} \ln (3x^2 + 4)$ or $\frac{1}{3} \ln (\frac{1}{3}(3x^2 + 4))$ or $\frac{1}{3} \ln (x^2 + \frac{4}{3})$ or $\frac{1}{3} \ln (p(3x^2 + 4))$.

You may allow M1 A1 for $\frac{1}{3} \left(\frac{x}{x} \right) \ln \left(3x^2 + 4 \right)$ or $\frac{1}{3} \left(\frac{2x}{6x} \right) \ln \left(3x^2 + 4 \right)$

dM1: Substitutes limits of 2 and 0 and subtracts the correct way round. Working in decimals is fine for dM1.

A1: For either $\frac{1}{3}\pi \ln 4$, $\frac{1}{3}\ln 4^{\pi}$, $\frac{2}{3}\pi \ln 2$, $\pi \ln 4^{\frac{1}{3}}$, $\pi \ln 2^{\frac{2}{3}}$, $\frac{1}{3}\pi \ln \left(\frac{16}{4}\right)$, $2\pi \ln \left(\frac{16^{\frac{1}{6}}}{4^{\frac{1}{6}}}\right)$, etc.

Note: $\frac{1}{3}\pi(\ln 16 - \ln 4)$ would be A0.

Working in u: where $u = 3x^2 + 4$,

M1: For $\pm k \ln u$ where k is a constant and k can be 1.

Note: M1 can also be given for $\pm k \ln(pu)$, where k and p are constants and k can be 1.

A1: For $\frac{1}{3} \ln u$ or $\frac{1}{3} \ln 3u$ or $\frac{1}{3} \ln pu$.

dM1: Substitutes limits of 16 and 4 in u or limits of 2 and 0 in x and subtracts the correct way round.

A1: As above!

Question Number	Scheme	Marks
6. (a)	0.73508	B1 cao [1]
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{8}$; $\times \left[0 + 2 \left(\text{their } 0.73508 + 1.17157 + 1.02280 \right) + 0 \right]$	B1 <u>M1</u>
	$= \frac{\pi}{16} \times 5.8589 = 1.150392325 = 1.1504 \text{ (4 dp)}$ awrt 1.1504	A1 [3]
(c)	$\{u = 1 + \cos x\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	<u>B1</u>
	$\left\{ \int \frac{2\sin 2x}{(1+\cos x)} \mathrm{d}x = \right\} \int \frac{2(2\sin x \cos x)}{(1+\cos x)} \mathrm{d}x \qquad \qquad \sin 2x = 2\sin x \cos x$	B1
	$= \int \frac{4(u-1)}{u} \cdot (-1) \mathrm{d}u \left\{ = 4 \int \frac{(1-u)}{u} \mathrm{d}u \right\}$	M1
	$=4\int \left(\frac{1}{u}-1\right)du=4\left(\ln u-u\right)+c$	dM1
	$= 4\ln(1+\cos x) - 4(1+\cos x) + c = 4\ln(1+\cos x) - 4\cos x + k$ AG	A1 cso [5]
(d)	$= \left[4\ln\left(1+\cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2}\right] - \left[4\ln\left(1+\cos 0\right) - 4\cos 0\right]$ Applying limits $x = \frac{\pi}{2}$ and $x = 0$ either way round.	M1
	$= [4\ln 1 - 0] - [4\ln 2 - 4]$	
	$\pm 4(1-\ln 2)$ or	
	$= 4 - 4 \ln 2 $ {= 1.227411278} $\pm (4 - 4 \ln 2)$ or awrt ± 1.2 , however found.	A1
	Error = $ (4 - 4 \ln 2) - 1.1504 $ awrt ± 0.077	
	$= 0.0770112776 = 0.077 (2sf)$ or awrt $\pm 6.3(\%)$	A1 cso [3]
		12
(a)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working.	
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196	

(b) **B1**: Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196 **M1**: For structure of trapezium rule [......]; (0 can be implied). **A1**: anything that rounds to 1.1504

Bracketing mistake: Unless the final answer implies that the calculation has been done correctly Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 6.0552).

Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}$ (0 + 0) + 2(their 0.73508 + 1.17157 + 1.02280) (nb: answer of 5.8589).

Alternative method for part (b): Adding individual trapezia

Area
$$\approx \frac{\pi}{8} \times \left[\frac{0 + 0.73508}{2} + \frac{0.73508 + 1.17157}{2} + \frac{1.17157 + 1.02280}{2} + \frac{1.02280 + 0}{2} \right] = 1.150392325...$$

B1: $\frac{\pi}{8}$ and a divisor of 2 on all terms inside brackets.

M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2.

A1: anything that rounds to 1.1504

6. (c) B1:
$$\frac{du}{dx} = -\sin x$$
 or $du = -\sin x dx$ or $\frac{dx}{du} = \frac{1}{-\sin x}$ oe.

B1: For seeing, applying or implying $\sin 2x = 2\sin x \cos x$.

M1: After applying substitution candidate achieves $\pm k \int \frac{(u-1)}{u} (du)$ or $\pm k \int \frac{(1-u)}{u} (du)$.

Allow M1 for "invisible" brackets here, eg: $\pm \int \frac{(\lambda u - 1)}{u} (du)$ or $\pm \int \frac{(-\lambda + u)}{u} (du)$, where λ is a positive constant.

dM1: An attempt to divide through each term by u and $\pm k \int \left(\frac{1}{u} - 1\right) du \rightarrow \pm k (\ln u - u)$ with/without

+ c. Note that this mark is dependent on the previous M1 mark being awarded.

<u>Alternative method:</u> Candidate can also gain this mark for applying integration by parts followed by a correct method for integrating ln u. (See below).

A1: Correctly combines their +c and "-4" together to give $4\ln(1+\cos x) - 4\cos x + k$

As a minimum candidate must write either $4\ln(1+\cos x) - 4(1+\cos x) + c \rightarrow 4\ln(1+\cos x) - 4\cos x + k$ or $4\ln(1+\cos x) - 4(1+\cos x) + k \rightarrow 4\ln(1+\cos x) - 4\cos x + k$

Note: that this mark is also for a correct solution only.

Note: those candidates who attempt to find the value of k will usually achieve A0.

(d) M1: Substitutes limits of $x = \frac{\pi}{2}$ and x = 0 into $\{4\ln(1+\cos x) - 4\cos x\}$ or their answer from part (c) and

subtracts the either way round. Note that: $\left[4\ln\left(1+\cos\frac{\pi}{2}\right)-4\cos\frac{\pi}{2}\right]-\left[0\right]$ is M0.

A1: 4(1-ln 2) or 4-4ln 2 or awrt 1.2, however found.

This mark can be implied by the final answer of either awrt ± 0.077 or awrt ± 6.3

A1: For either awrt ± 0.077 or awrt ± 6.3 (for percentage error). Note this mark is for a **correct solution** only. Therefore if there if a candidate substitutes limits the incorrect way round and final achieves (usually fudges) the final correct answer then this mark can be withheld. Note that awrt 6.7 (for percentage error) is A0.

Alternative method for dM1 in part (c)

$$\int \frac{(1-u)}{u} du = \left((1-u) \ln u - \int -\ln u \, du \right) = \left((1-u) \ln u + u \ln u - \int \frac{u}{u} \, du \right) = \left((1-u) \ln u + u \ln u - u \right)$$
or
$$\int \frac{(u-1)}{u} \, du = \left((u-1) \ln u - \int \ln u \, du \right) = \left((u-1) \ln u - \left(u \ln u - \int \frac{u}{u} \, du \right) \right) = \left((u-1) \ln u - u \ln u + u \right)$$

So **dM1** is for $\int \frac{(1-u)}{u} du$ going to $((1-u)\ln u + u \ln u - u)$ or $((u-1)\ln u - u \ln u + u)$ oe.

Alternative method for part (d)

M1A1 for
$$\left\{ 4 \int_{2}^{1} \left(\frac{1}{u} - 1 \right) du = \right\} 4 \left[\ln u - u \right]_{2}^{1} = 4 \left[(\ln 1 - 1) - (\ln 2 - 2) \right] = 4 (1 - \ln 2)$$

Alternative method for part (d): Using an extra constant λ from their integration.

$$\left[4\ln\left(1+\cos\frac{\pi}{2}\right)-4\cos\frac{\pi}{2}+\lambda\right]-\left[4\ln\left(1+\cos\theta\right)-4\cos\theta+\lambda\right]$$

 λ is usually -4, but can be a value of k that the candidate has found in part (d).

Note: The extra constant λ should cancel out and so the candidate can gain all three marks using this method, even the final A1 cso.

Question	Scheme	Marks	
Number 8. (a)	1 = A(5 - P) + BP Can be implied.	M1	
	$A = \frac{1}{5}, B = \frac{1}{5}$ Either one.	A1	
	giving $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$ See notes.	Al cao, aef	
		[3]	
(b)	$\int \frac{1}{P(5-P)} \mathrm{d}P = \int \frac{1}{15} \mathrm{d}t$	В1	
	$\frac{1}{5}\ln P - \frac{1}{5}\ln(5 - P) = \frac{1}{15}t \ (+c)$	M1* A1ft	
	$\{t = 0, P = 1 \Rightarrow\}$ $\frac{1}{5}\ln 1 - \frac{1}{5}\ln(4) = 0 + c$ $\{\Rightarrow c = -\frac{1}{5}\ln 4\}$	dM1*	
	eg: $\frac{1}{5} \ln \left(\frac{P}{5 - P} \right) = \frac{1}{15} t - \frac{1}{5} \ln 4$ Using any of the subtraction (or addition) laws for logarithms CORRECTLY	dM1*	
	$\ln\left(\frac{4P}{5-P}\right) = \frac{1}{3}t$ eg: $\frac{4P}{5-P} = e^{\frac{1}{3}t}$ or eg: $\frac{5-P}{4P} = e^{-\frac{1}{3}t}$ Eliminate ln's correctly.	dM1*	
	gives $4P = 5e^{\frac{1}{3}t} - Pe^{\frac{1}{3}t} \implies P(4 + e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t}$ $P = \frac{5e^{\frac{1}{3}t}}{(4 + e^{\frac{1}{3}t})} \qquad \left\{ \frac{(+e^{\frac{1}{3}t})}{(+e^{\frac{1}{3}t})} \right\}$ Make <i>P</i> the subject.	dM1*	
	$P = \frac{5}{(1+4e^{-\frac{1}{3}t})}$ or $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$ etc.	A1	
(c)	$1 + 4e^{-\frac{1}{3}t} > 1 \implies P < 5$. So population cannot exceed 5000.	[8] B1 [1]	
(a)	M1: Forming a correct identity. For example, $1 = A(5 - P) + BP$. Note A and B not referred		
	A1: Either one of $A = \frac{1}{5}$ or $B = \frac{1}{5}$.		
	A1: $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$ or any equivalent form, eg: $\frac{1}{5P} + \frac{1}{25-5P}$, etc. Ignore subsequent working.		
	This answer must be stated in part (a) only.		
	All can also be given for a candidate who finds both $A = \frac{1}{5}$ and $B = \frac{1}{5}$ and $A = \frac{A}{P} + \frac{B}{5 - P}$ is seen in their		
	working. Candidate can use 'cover-up' rule to write down $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$, as so gain all three marks.		
	Candidate cannot gain the marks for part (a) in part (b).		

- **8.** (b) **B1:** Separates variables as shown. d*P* and d*t* should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.
 - M1*: Both $\pm \lambda \ln P$ and $\pm \mu \ln(\pm 5 \pm P)$, where λ and μ are constants.
 - Or $\pm \lambda \ln mP$ and $\pm \mu \ln(n(\pm 5 \pm P))$, where λ , μ , m and n are constants.
 - **A1ft:** Correct follow through integration of both sides from their $\int \frac{\lambda}{P} + \frac{\mu}{(5-P)} dP = \int K dt$
 - with or without +c
 - **dM1*:** Use of t = 0 and P = 1 in an integrated equation containing c
 - dM1*: Using ANY of the subtraction (or addition) laws for logarithms CORRECTLY.
 - dM1*: Apply logarithms (or take exponentials) to eliminate ln's CORRECTLY from their equation.
 - dM1*: A full ACCEPTABLE method of rearranging to make P the subject. (See below for examples!)
 - **A1:** $P = \frac{5}{(1+4e^{-\frac{1}{3}t})}$ {where a = 5, b = 1, c = 4 }.
 - Also allow any "integer" multiples of this expression. For example: $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$
 - Note: If the first method mark (M1*) is not awarded then the candidate cannot gain any of the six remaining marks for this part of the question.
 - Note: $\int \frac{1}{P(5-P)} dP = \int 15 dt \implies \int \frac{1}{5} + \frac{1}{(5-P)} dP = \int 15 dt \implies \ln P \ln(5-P) = 15t$ is B0M1A1ft.

dM1* for making P the subject

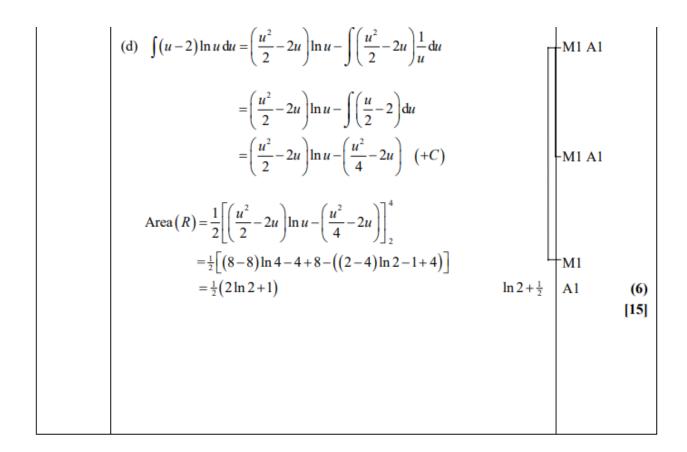
- Note there are three type of manipulations here which are considered acceptable to make P the subject.
- (1) M1 for $\frac{P}{5-P} = e^{\frac{1}{3}t} \Rightarrow P = 5e^{\frac{1}{3}t} Pe^{\frac{1}{3}t} \Rightarrow P(1+e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t} \Rightarrow P = \frac{5}{(1+e^{-\frac{1}{3}t})}$
- (2) M1 for $\frac{P}{5-P} = e^{\frac{1}{3}t} \Rightarrow \frac{5-P}{P} = e^{\frac{1}{3}t} \Rightarrow \frac{5}{P} 1 = e^{\frac{1}{3}t} \Rightarrow \frac{5}{P} = e^{\frac{1}{3}t} + 1 \Rightarrow P = \frac{5}{(1+e^{\frac{1}{3}t})}$
- (3) M1 for $P(5-P) = 4e^{\frac{1}{3}t} \Rightarrow P^2 5P = -4e^{\frac{1}{3}t} \Rightarrow \left(P \frac{5}{2}\right)^2 \frac{25}{4} = -4e^{\frac{1}{3}t}$ leading to $P = \dots$
- **Note:** The incorrect manipulation of $\frac{P}{5-P} = \frac{P}{5} 1$ or equivalent is awarded this dM0*.
- **Note:** $(P) (5 P) = e^{\frac{1}{3}t} \implies 2P 5 = \frac{1}{3}t$ leading to P = ... or equivalent is awarded this dM0*
- (c) **B1:** $1 + 4e^{-\frac{1}{3}t} > 1$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000.
 - For $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$, B1 can be awarded for $5+20e^{-\frac{1}{3}t} > 5$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000.
 - B1 can only be obtained if candidates have correct values of a and b in their $P = \frac{a}{(b+ce^{-\frac{1}{3}t})}$.
 - **Award B0 for:** As $t \to \infty$, $e^{-\frac{1}{3}t} \to 0$. So $P \to \frac{5}{(1+0)} = 5$, so population cannot exceed 5000,
 - **unless** the candidate also proves that $P = \frac{5}{(1 + 4e^{-\frac{1}{3}t})}$ oe. is an increasing function.

If unsure here, then send to review!

8. Alternative method for part (b)

B1M1*A1: as before for
$$\frac{1}{5} \ln P - \frac{1}{5} \ln(5 - P) = \frac{1}{15}t$$
 (+ c)

Award 3rd M1 for $\ln \left(\frac{P}{5 - P}\right) = \frac{1}{3}t + c$


Award 4th M1 for $\frac{P}{5 - P} = Ae^{\frac{1}{5}t}$

Award 2nd M1 for $t = 0, P = 1 \Rightarrow \frac{1}{5 - 1} = Ae^0 \iff A = \frac{1}{4}$

$$\frac{P}{5 - P} = \frac{1}{4}e^{\frac{1}{5}t}$$
then award the final M1A1 in the same way.

June 2011 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks	
4.	(a) 0.0333, 1.3596 awrt 0.0333, 1.3596	B1 B1	(2)
	(b) Area $(R) \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} []$	B1	
	$\approx \left[0 + 2(0.0333 + 0.3240 + 1.3596) + 3.9210\right]$	M1	
	≈ 1.30 Accept	A1	(3)
	(c) $u = x^2 + 2 \implies \frac{du}{dx} = 2x$	B1	
	Area $(R) = \int_0^{\sqrt{2}} x^3 \ln(x^2 + 2) dx$	B1	
	$\int x^3 \ln(x^2 + 2) dx = \int x^2 \ln(x^2 + 2) x dx = \int (u - 2) (\ln u) \frac{1}{2} du$	M1	
	Hence Area $(R) = \frac{1}{2} \int_{2}^{4} (u-2) \ln u du$	A1	(4)
	cso		

Question Number	Scheme	Marks
8.	(a) $\int (4y+3)^{-\frac{1}{2}} dx = \frac{(4y+3)^{\frac{1}{2}}}{(4)(\frac{1}{2})} + C$ $\left(= \frac{1}{2}(4y+3)^{\frac{1}{2}} + C \right)$	M1 A1 (2)
	(b) $\int \frac{1}{\sqrt{(4y+3)}} dy = \int \frac{1}{x^2} dx$ $\int (4y+3)^{-\frac{1}{2}} dy = \int x^{-2} dx$	В1
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x} (+C)$	M1
	Using $(-2, 1.5)$ $\frac{1}{2}(4 \times 1.5 + 3)^{\frac{1}{2}} = -\frac{1}{-2} + C$ leading to $C = 1$	M1 A1
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x}+1$ $(4y+3)^{\frac{1}{2}} = 2 - \frac{2}{x}$	M1
	$y = \frac{1}{4} \left(2 - \frac{2}{x} \right)^2 - \frac{3}{4}$ or equivalent	A1 (6)
 		[8]

Jan 2011 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks
1.	$\int x \sin 2x dx = -\frac{x \cos 2x}{2} + \int \frac{\cos 2x}{2} dx$ $= \dots + \frac{\sin 2x}{4}$	M1 A1 A1
	$\left[\ \dots \ \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}$	M1 A1
		[6]

Question Number	Scheme	Marks
3.	$\frac{5}{(x-1)(3x+2)} = \frac{A}{x-1} + \frac{B}{3x+2}$ $5 = A(3x+2) + B(x-1)$ $x \to 1 \qquad 5 = 5A \implies A = 1$ $x \to -\frac{2}{3} \qquad 5 = -\frac{5}{3}B \implies B = -3$	M1 A1
	$x \rightarrow -\frac{1}{3}$ $5 = -\frac{1}{3}B \Rightarrow B = -3$	A1 (3)
(b)	$\int \frac{5}{(x-1)(3x+2)} dx = \int \left(\frac{1}{x-1} - \frac{3}{3x+2}\right) dx$ $= \ln(x-1) - \ln(3x+2) (+C)$ ft constants	
	$= \ln(x-1) - \ln(3x+2) (+C) $ ft constants	M1 A1ft A1ft
		(3)
(c)	$\int \frac{5}{(x-1)(3x+2)} dx = \int \left(\frac{1}{y}\right) dy$	M1
	$\ln(x-1) - \ln(3x+2) = \ln y (+C)$	M1 A1
	$y = \frac{K(x-1)}{3x+2}$ depends on first two Ms in (c)	M1 dep
	Using (2,8) $8 = \frac{K}{8}$ depends on first two Ms in (c)	M1 dep
	$y = \frac{64(x-1)}{3x+2}$	A1 (6)
		[12]

Question Number	Scheme		Marks
7. (a)	$x = 3 \implies y = 0.1847$ $x = 5 \implies y = 0.1667$	awrt awrt or $\frac{1}{6}$	B1 B1 (2)
(b)	$I \approx \frac{1}{2} \Big[0.2 + 0.1667 + 2(0.1847 + 0.1745) \Big]$ ≈ 0.543	0.542 or 0.543	<u>B1</u> M1 A1ft A1 (4)
(c)	$\frac{\mathrm{d}x}{\mathrm{d}u} = 2\left(u - 4\right)$		B1
	$\int \frac{1}{4+\sqrt{(x-1)}} dx = \int \frac{1}{u} \times 2(u-4) du$		M1
	$=\int \left(2-\frac{8}{u}\right)du$		A1
	$= 2u - 8 \ln u$ $x = 2 \implies u = 5, x = 5 \implies u = 6$		M1 A1 B1
	$[2u-8\ln u]_5^6 = (12-8\ln 6)-(10-8\ln 5)$		M1
	$=2+8\ln\left(\frac{5}{6}\right)$		A1
			(8) [14]

June 2010 Mathematics Advanced Paper 1: Pure Mathematics 4

Question Number	Scheme	Marks
1.	(a) $y\left(\frac{\pi}{6}\right) \approx 1.2247$, $y\left(\frac{\pi}{4}\right) = 1.1180$ accept awrt 4 d.p.	B1 B1 (2)
	(b)(i) $I \approx \left(\frac{\pi}{12}\right) (1.3229 + 2 \times 1.2247 + 1)$ B1 for $\frac{\pi}{12}$ cao	B1 M1 A1
	(24)	B1 M1 A1 (6) [8]

51.				
	Question Number	Scheme	Marks	
	2.	$\frac{du}{dx} = -\sin x$ $\int \sin x e^{\cos x + 1} dx = -\int e^{u} du$	B1 M1 A1	
		$=-e^{\cos x+1}$	A1ft	
		$\left[-e^{\cos x+1}\right]_0^{\frac{\pi}{2}} = -e^1 - \left(-e^2\right) \qquad \text{or equivalent with } u$ $= e\left(e-1\right) * \qquad \text{cso}$	M1	
		= e(e-1) * cso	A1	(6) [6]

52.				
	Question Number	Scheme	Marks	5
	6.	(a) $f(\theta) = 4\cos^2\theta - 3\sin^2\theta$ $= 4\left(\frac{1}{2} + \frac{1}{2}\cos 2\theta\right) - 3\left(\frac{1}{2} - \frac{1}{2}\cos 2\theta\right)$ $= \frac{1}{2} + \frac{7}{2}\cos 2\theta * \qquad cso$	M1 M1	(3)
		(b) $\int \theta \cos 2\theta d\theta = \frac{1}{2} \theta \sin 2\theta - \frac{1}{2} \int \sin 2\theta d\theta$ $= \frac{1}{2} \theta \sin 2\theta + \frac{1}{4} \cos 2\theta$	M1 A1	
		$\int \theta f(\theta) d\theta = \frac{1}{4} \theta^2 + \frac{7}{4} \theta \sin 2\theta + \frac{7}{8} \cos 2\theta$	M1 A1	
		$\left[\dots \right]_0^{\frac{\pi}{2}} = \left[\frac{\pi^2}{16} + 0 - \frac{7}{8} \right] - \left[0 + 0 + \frac{7}{8} \right]$	M1	
		$=\frac{\pi^2}{16}-\frac{7}{4}$	A1	(7) [10]

Question Number	Scheme	Marks	
Q2	(a) 1.386, 2.291 awrt 1.386, 2.291	B1 B1	(2)
	(b) $A \approx \frac{1}{2} \times 0.5$ ()	B1	
	$= \dots \left(0 + 2(0.608 + 1.386 + 2.291 + 3.296 + 4.385) + 5.545\right)$	M1	
	= $0.25(0+2(0.608+1.386+2.291+3.296+4.385)+5.545)$ ft their (a)	A1ft	
	= 0.25×29.477 ≈ 7.37 cao	A1	(4)
	(c)(i) $\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{1}{x} dx$	M1 A1	
	$= \frac{x^2}{2} \ln x - \int \frac{x}{2} dx$ $= \frac{x^2}{2} \ln x - \frac{x^2}{4} (+C)$	M1 A1	
	(ii) $\left[\frac{x^2}{2}\ln x - \frac{x^2}{4}\right]^4 = (8\ln 4 - 4) - \left(-\frac{1}{4}\right)$	M1	
	$\begin{bmatrix} 2 & 4 \end{bmatrix}_1 $ $= 8 \ln 4 - \frac{15}{4}$		
	$= 8(2 \ln 2) - \frac{15}{4} \qquad \qquad \ln 4 = 2 \ln 2 \text{ seen or implied}$	M1	
	$= \frac{1}{4} (64 \ln 2 - 15) \qquad a = 64, b = -15$	A1	(7)
	"		[13]

Question Number	Scheme	Marks	
Q5	(a) $\int \frac{9x+6}{x} dx = \int \left(9 + \frac{6}{x}\right) dx$	M1	
	$=9x+6\ln x \ (+C)$	A1	(2)
	(b) $\int \frac{1}{y^{\frac{1}{3}}} dy = \int \frac{9x+6}{x} dx$ Integral signs not necessary	B1	
	$\int y^{-\frac{1}{3}} \mathrm{d}y = \int \frac{9x+6}{x} \mathrm{d}x$		
	$\frac{y^{\frac{2}{3}}}{\frac{2}{3}} = 9x + 6 \ln x \ (+C) \qquad \pm ky^{\frac{2}{3}} = \text{ their (a)}$	M1	
	$\frac{3}{2}y^{\frac{2}{3}} = 9x + 6\ln x \ (+C)$ ft their (a)	A1ft	
	y = 8, x = 1	7770 H	
	$\frac{3}{2}8^{\frac{2}{3}} = 9 + 6\ln 1 + C$	M1	
	$C = -3$ $y^{\frac{2}{3}} = \frac{2}{3} (9x + 6 \ln x - 3)$	A1	
	$y^2 = (6x + 4 \ln x - 2)^3 (= 8(3x + 2 \ln x - 1)^3)$	A1	(6)
			[8]

Question Number	Scheme	Marks
Q8	(a) $\frac{\mathrm{d}x}{\mathrm{d}u} = -2\sin u$	B1
	$\int \frac{1}{x^2 \sqrt{4 - x^2}} dx = \int \frac{1}{(2\cos u)^2 \sqrt{4 - (2\cos u)^2}} \times -2\sin u du$	M1
	$= \int \frac{-2\sin u}{4\cos^2 u \sqrt{4\sin^2 u}} du \qquad \text{Use of } 1 - \cos^2 u = \sin^2 u$	M1
	$= -\frac{1}{4} \int \frac{1}{\cos^2 u} du \qquad \pm k \int \frac{1}{\cos^2 u} du$	M1
	$= -\frac{1}{4} \tan u \ (+C) $ $\pm k \tan u$	M1
	$x = \sqrt{2} \implies \sqrt{2} = 2\cos u \implies u = \frac{\pi}{4}$	
	$x=1 \implies 1=2\cos u \implies u=\frac{\pi}{3}$	M1
	$\left[-\frac{1}{4}\tan u\right]_{\frac{\pi}{3}}^{\frac{\pi}{4}} = -\frac{1}{4}\left(\tan\frac{\pi}{4} - \tan\frac{\pi}{3}\right)$	
	$=-\frac{1}{4}\left(1-\sqrt{3}\right) \left(=\frac{\sqrt{3}-1}{4}\right)$	A1 (7)
	(b) $V = \pi \int_{1}^{\sqrt{2}} \left(\frac{4}{x(4-x^2)^{\frac{1}{4}}} \right)^2 dx$	M1
	$=16\pi \int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} dx \qquad 16\pi \times \text{ integral in (a)}$	M1
	$=16\pi\left(\frac{\sqrt{3}-1}{4}\right)$ 16\pi \times \text{ their answer to part (a)}	A1ft (3)
		[10]